Characterization of Vanadium-Doped BaBi4Ti4O15 Prepared by Molten KCl Salt Method

Suci Noerfaiqotul Himmah, Puspa Sari, Anton Prasetyo

Abstract

One of the potential properties of the Aurivillius compound is photocatalyst. The four-layered Aurivillius compound BaBi4Ti4O15 has a bandgap energy of 3.2 eV caused having work function in the UV light area. The strategy to decrease the bandgap energy is doping with metal elements such as vanadium (V). In this research, vanadium-doped BaBi4Ti4O15 (BaBi4Ti4-xVxO15) (x= 0, 0.05, 0.1, and 0.15)) compounds was synthesized through the molten KCl salt method. The diffractogram samples showed that BaBi4Ti4-xVxO15 (x= 0, 0.05, 0.1, 0.15) had been successfully obtained but still found impurities  TiO2 (rutile phase) at x= 0, 0.05, 0.1, 0.15, and Bi4V2O11 at x= 0.15. The SEM image showed that the particle has plate-like morphology. The UV-Vis DRS spectrum showed that vanadium-doped BaBi4Ti4O15 has lower bandgap energy.

Keywords

BaBi4Ti4O15; photocatalyst; vanadium; molten KCl Salt

Full Text:

PDF

References

[1] B. Aurivillius, “Mixed Bismuth Oxides with Layer Lattices: I The Structure Type of Bi4Ti3O12,” Arkiv Kemi Band., vol. 1, no. 154, pp. 499-512, 1949.

[2] Z. Lazeravic, B. Stojanovic, and J. Varela, “Approach to Analyzing Synthesis, Structure and Properties of Bismuth Titanate Ceramics,” Sci. Sinter., vol. 37, no. 3, pp. 199-216, 2005.

DOI: 10.2298/SOS0503199L

[3] D. Peng, H. Zou, C. Xu, X. Wang, and X. Yao, “Er Doped BaBi4Ti4O15 Multifunctional Ferroelectrics: Up-Conversion Photoluminescence, Dielectric and Ferroelectric Properties,” J. Alloys Compd., vol. 552, pp. 463-468, 2013.

DOI:10.1016/J.JALLCOM.2012.10.194

[4] W. F. Yao, H. Wang, X. H. Xu, Y. Huo, Y. Zhang, and M. Wang, “Synthesis and Photocatalytic Property of Bismuth Titanate Bi4Ti3O12,Mater. Lett., vol. 57, no. 13, pp. 1899-1902, 2003.

DOI: 10.1016/S0167-577X(02)01097-2

[5] H. Kohri and T. Yagasaki, “Thermoelectric Generating Properties of Aurivillius Compounds,” Adv. Sci. Tech., vol. 77, pp. 285-290, 2013.

DOI:10.4028/www.scientific.net/AST.77.285

[6] H. G. Kim, D. W. Hwang, and J. S. Lee, “An Undoped, Single-Phase Oxide Photocatalyst Working under Visible Light,” J. Am. Chem. Soc., vol. 126, no. 29, pp. 8912-8913, 2004.

DOI:10.1021/ja049676a

[7] M. Oshikiri, N. Boero, J. Ye, Z. Zou, and G. Kido, “Electronic Structures of Promising Photocatalysts InMO4 (M=V, Nb, Ta) and BiVO4 for Water Decomposition in The Visible Wavelength Region,” J. Chem. Phys., vol. 117, no. 15, pp. 7313-7318, DOI:10.1063/1.1507101

[8] J. Tang, Z. Zou, J. Ye, “Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible–Light Irradiation,” Angew. Chem. Int. Ed. Engl., vol. 43, no. 34, pp. 4463-4466, 2004. DOI: 10.1002/anie.200353594

[9] H. Tong, S. Ouyang, Y. Bi, N. Uwezama, M. Oshikiri, and J. Ye, “Nano-Photocatalytic Materials: Possibilities and Challenge,” Adv. Mater., vol. 24, no. 2, 2012.

DOI: 10.1002/adma.201102752

[10] X. Liu, L. Xu, Y. Huang, C. Qin, L. Qin, and H. J. Seo, “Improved Photochemical Properties of Aurivillius Bi5Ti3FeO15 with Partial Substitution of Ti4+ with Fe3+,” Ceram. Int., vol. 43, no. 5, pp. 12372-12380, 2017.

DOI: 10.1016/j.ceramint.2017.06.103

[11] R. K. Agustina, D. Suheriyanto, and P. Anton, “The Molten Salt Synthesis of Vanadium-Doped Bi4Ti3O12 Using Single Salt NaCl,” Jurnal Kartika Kimia, vol. 3, pp. 19-24, 2020.

DOI: 10.26874/jkk.v3i1.50

[12] Y. Yang, Q. Chen, Z. Yin, and J. Li, “Study on The Photocatalytic Activity of K2La2Ti3O10 Doped with Vanadium (V),” J. Alloys Compd., vol. 488, no. 1, pp. 364-369, 2009.

DOI: 10.1016/j.jallcom.2009.08.136

[13] C. N. R. Rao, “Solid State Chemistry,” vol. 4. Singapore; World Scientific Publishing, 1995.

[14] J. Tellier, P. Boullay, M. Manier, and D. Mercurio. “A Comperative Study of The Aurivillius Phase Ferroelectrics CaBi4Ti4O15 and BaBi4Ti4O15,” J. Solid State Chem., vol. 177, no. 6, pp. 1829-1837, 2004.

DOI: 10.1016/j.jssc.2004.01.008

[15] C. L. Diao, J. B. Xu, H. W. Zheng, L. Fang, Y. Z. Gu, and W. F. Zhang, “Dielectric and Piezoelectric Properties of Cerium Modified BaBi4Ti4O15 Ceramics,” Ceram. Int., vol. 39, no. 6, pp. 6991-6995, 2013.

DOI:10.1016/j.ceramint.2013.02.036

[16] J. D. Bobic, M. M. V. Petrovic, and B. D. Stojanovic, ”Aurivillius BaBi4Ti4O15 Based Compounds: Structures, Synthesis, and Properties,” Process. Appl. Ceram., vol. 7, no. 3, pp. 97-110, 2013.

DOI: 10.2298/PAC1303097B

[17] W. Qi, Y. Wang, J. Wu, Z. Hu, C. Jia, and H. Zhang, “Relaxor Ferroelectric and Photocatalytic Properties of BaBi4Ti4O15,” Adv. Appl. Ceram., vol. 118, no. 7, pp. 418-424, 2019.

DOI: 10.1080/17436753.2019.1634943

[18] A. Kudo, dan Y. Miseki, “Heterogenous Photocatalyst Materials for Water Splitting,” Chem. Soc. Rev., no. 38, pp. 253-278, 2008.

DOI: 10.1039/B800489G

[19] A. D. Paola, E. Garcı́a-López, S. Ikeda, G. Marcı̀, B. Ohtani, and L. Palmisano, “Photocatalytic Degradation of Organic Compounds in Aqueous Systems by Transition Metal Doped Polycrystalline TiO2,” Catal. Today, vol. 75, no. 1-4, pp. 87–93, 2002.

DOI:10.1016/s0920-5861(02)00048-2

[20] A. Z. Simoes, B. Stojanovic, M. A. Ramirez, A. A. Cavelheiro, E. Longo, and J. A. Varela, “Lanthanum Doped Bi4Ti3O12 Prepared by The Soft Chemical Method: Rietveld Analysis and Piezoelectric Properties,” Ceram. Inter., vol. 34, no. 2, pp. 257-261, 2008.

DOI: 10.1016/j.ceramint.2006.09.019

[21] C. Chen, K. Song, W. Bei, J. yang, Y. Zhang, P. Xiang, M. Qin, X. Tang, and J. Chu, “Effect of Nb and More Fe Ions Co-Doping on The Microstructures, Magnetic, and Piezoelectric Properties of Aurivillius Bi5Ti3FeO15 Phases,” J. Appl. Phys., vol. 120, no. 21, pp. 1-9, 2016.

DOI: 10.1063/1.4971256

[22] X. Liu, L. Xu, Y. Huang, C. Qin, L. Qin, and H. J. Seo, “Improved Photochemical Properties of Aurivillius Bi5Ti3FeO15 with Partial Substitution of Ti4+ with Fe3+,” Ceram. Int., vol. 43, no. 5, pp. 12372-12380, 2016.

DOI: 10.1016/J.CERAMINT.2017.06.103

[23] J. Hou, R. Cao, Z. Wang, S. Jiao, and H. Zhu, “Chromium-Doped Bismuth Titanate Nanosheets as Enhanced Visible-Light Photocatalyst with A High Percentage of Reactive {110} Facets,” J. Mater. Chem., vol. 21, no. 20, pp. 7296-7301, 2011.

DOI: 10.1039/C0JM04374E

[24] D. Gu. Y. Qin, Y. Wen, T. Li, L. Qin, and H. J. Seo, “Electronic Structure and Optical Properties of V-Doped Bi4Ti3O12 Nanoparticles,” J. Alloys Compd., vol. 695, pp. 2224-2231, 2016.

DOI: 10.1016/j.jallcom.2016.11.071

[25] X. Lin, Q. Guan, Y. Zhang, T. Liu, C. Zou, C. Liu, and H. Zhai, “Visible Light Photocatalytic Properties of Bi3.25Eu0.75Ti3O12 Nanowires,” J. Phys. Chem. Solids., vol. 74, no. 9, pp. 1254-1262, 2013.

DOI: 10.1016/j.jpcs.2013.04.001

[26] E. V. Ramana, N. V. Prasad, D. M. Tobaldi, J. Zavasnik, M. Singh, M. J. Hortiguela, M. Seabra, G. Prasad, and M. A. Valente, “Effect of Samarium and Vanadium co-Doping on Strucutre, Ferroelectric and Photocatalytic Properties of Bismuth Titanate,” RSC Adv., vol. 7, no. 16, pp. 9680-9692, 2017.

DOI: 10.1039/C7RA00021A

[27] W. C. Ferreira, G. L. C. Rodrigues, B. S. Araujo, F. A. A. Aguiar, A. N. A. A. Silva, P. B. A. Fechine, C. W. A. Paschoal, and A. P. Ayala, “Pressure Induced Structural Phase Transition in The Multiferroic Four-Layer Aurivillius Ceramic Bi5FeTi3O15,” Ceram. Int., vol. 46, pp. 18056-18062, 2020.

DOI: 10.1016/j.ceramint.2020.04.122

[28] Z. Zhao, X. Li, H. Ji, and M. Deng, “Formation Mechanism of Plate-Like Bi4Ti3O12 Particles in Molten Salt Fluxes,” Integr. Ferroelectr, vol. 154, no. 154, pp. 37-41, 2014.

DOI: 10.1080/10584587.2014.904705

[29] C. Y. Kim, T. Sekino, and K. Nihara, “Synthesis of Bismuth Sodium Titanate Nanosized Powders by Solution/Sol-Gel Process,” J. Am. Ceram., Soc., vol. 86, no. 9, pp. 1464-1467, 2003.

DOI: 10.1111/j.1151-2916.2003.tb03497.x

[30] P. Pookmanee, P. Uriwilast, and S. Phanichpant, “Hydrothermal Synthesis of Fine Bismuth Titanate Powders,” Ceram. Int., vol. 30, no. 70, pp. 1913-1915, 2004.

DOI:10.1016/j.ceramint.2003.12.043

[31] C. Sikaladis, “Advances in Ceramics: Synthesis and Characterization, Processing and Specific Application,” Rijeka: In Tech, 2011.

[32] Z. Lou, H. Minglong, W. Ruikun, Q, Weiwei, Z. Deijan, and C. Changel, “Large-Scale Synthesis of Monodisper Magnessium Ferrite via an Enviromentally Friendly Molten Salt Route,” Inorg. Chem., vol. 53, no. 4, pp. 2053-2057, 2014.

DOI: 10.1021/ic402558t

[33] Y. Mao, T. Tran, X. Guo, J. Y. Huang, C. K. Shih, K. L. Wang, and J. P. Chang, “Environmentally Friendly Methodologies of Nanostructure Synthesis,” Small, vol 3, no. 7: 1122-1139. 2007.

DOI: 10.1002/smll.200700048.

[34] Y. Yu, S. Wang, W. Li, and Z. Chen, “Low Temperature Synthesis of LaB6 Nanoparticles by a Molten Salt Route,” Powder Technol., vol. 323, pp. 203-207, 2018.

DOI: 10.1016/J.POWTEC.2017.09.049

[35] Y. Mao, X. Guo, J. Y. Huang, K. L. Wang, and J. P. Chang, “Luminescent Nanocrystals with A2B2O7 Composition Synthesized by A Kinetically Modified Molten Salt Method,” J. Phys. Chem. C., vol. 113, no. 4, pp. 1204-1208, 2009.

DOI: 10.1021/jp807111h

[36] X. Liu, N. Fechler, and M. Antonietti, “Salt Melt Synthesis of Ceramics, Semiconductors and Carbon Nanostructures,” Chem. Soc. Rev., vol. 42, no. 21, pp. 8237-8265, 2013.

DOI: 10.1039/C3CS60159E

[37] Y. Chang, J. Wu, M. Zhang, E. Kupp, and G. L. Messing, “Molten Salt Synthesis of Morphology Controlled α-Alumina Platelets,” Ceram. Int., vol. 43, no.15, pp. 12684-12688, 2017.

DOI: 10.1016/j.ceramint.2017.06.150

[38] J. P. Zuniga, M. Abdou, S. K. Gupta, and Y. Mao, “Molten-Salt Synthesis of Complex Metal Oxides Nanoparticles,” J. Vis. Exp., vol. 140, pp. 1-7, 2018.

DOI:10.3791/58482

[39] J. Huang, L. Lihua, Y. Gu, and Q. L. Li, “Influences of Progressing Parameters on Flake BaBi4Ti4O15 Powder Synthesized by Molten Salt Synthesis Method,” Adv. Mat. Res., vol. 335-336, pp. 704-707, 2011.

DOI: 10.4028/www.scientific.net/AMR.335-336.704

[40] T. Kimura and Y. Yoshida, “Origin of Texture Development in Barium Bismuth Titanate Prepared by The Templated Grain Growth Method,” J. Am. Ceram. Soc., vol. 89, no. 3, pp. 869-874, 2006.

DOI: 10.1111/j.1551-2916.2006.00846.x

[41] H. Irie, M. Miyayama, T. Kudo, “Enhanced Ferroelectric Properties of V-Doped BaBi4Ti4O15 Single Crystal,” Jpn. J. Appl. Phys., vol. 40, no. 1, pp. 239-243.

DOI:10.1143/JJAP.40.239

[42] T. Badapanda, P. Nayak, S. R. Mishra, R. Harichandan, and P. K. Ray, “Investigation of Temperature Variant Dielectric and Conduction Behaviour of Strontium Modified BaBi4Ti4O15 Ceramic,” J. Mater. Sci. Mater., vol. 30, no. 3, pp. 1-9, 2019.

DOI:10.1007/s10854-019-00678-6

[43] H. Maulidianingtiyas, A. D. Prasetiyo, F. Haikal, I. N. Cahyo, V. N. Istighfarini, and A. Prasetyo, “Pengaruh Penggantian Kation-A/Sr oleh Ba pada Morfologi Partikel BaxSr(1-x)TiO3 (x = 0; 0,2; 0,4; 0,6; 0,8) Hasil Sintesis dengan Metode Lelehan Garam,” Alchemy, vol. 17, no. 2, pp. 211-218, 2021.

DOI: 10.20961/alchemy.17.2.48554.211-218

[44] P. Makula, M. Pacia, and W. Mayck, “How to Correctly Determine The Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra,” J. Phys. Chem. Lett., vol. 9, no. 23, pp. 6814-6817, 2018.

DOI:10.1021/acs.jpclett.8b02892

[45] T. Kocak, L. Wu, J. Wang, U. Savaci, S. Turan, and X. Zhang, “The Effect of Vanadium Doping on The Cycling Performance of LiNi0,5Mn1,5O4 Spinel Cathode for High Voltage Lithium-Ion Batteries,” J. Electroanal. Chem., vol. 881, no. 47, pp. 114926-114963, 2021.

DOI: 10.1016/j.jelechem.2020.114926

[46] Y. Chen, J. Xu, S. Xie, Z. Tan, R. Nie, Z. Guan, and J. Zhu, “Ion Doping Effects on the Lattice Distortion and Interlayer Mismatch of Aurivillius-Type Bismuth Titanate Compounds,” Materials., vol. 11, no. 5, pp. 821-835, 2018.

DOI: 10.3390/ma11050821

[47] N. Aini, R. Ningsih, D. Maulina, F. F. Lami’, and S. N. Chasanah, “Visible Light Driven Photocatalyst of Vanadium (V3+) Doped TiO2 Synthesized Using Sonochemical Method,” Mater. Sci. Eng., vol. 333, no. 1, pp. 1-5, 2018.

DOI:10.1088/1757-899X/333/1/012020

[48] T. S. Kim, K. W. Kim, M. K. Jeon, C. H. Jung, and S. I. Woo, “Effect of Vanadium Content on Remanent Polarization in Bismuth Titanate Thin Films Prepared by Liquid Source Misted Chemical Deposition,” Appl. Phys. Lett., vol. 90, no. 4, pp. 042912-042915, 2007.

doi:10.1063/1.2432226

[49] A. Kikuchihara, F. Sakurai, and T. Kimura, “Preparation of Platelike NaNbO3 Particles by Single Step Molten Salt Synthesis,” J. Am. Ceram. Soc., vol. 95, no. 5, pp. 1556-1562, 2012.

DOI:10.1111/j.1551-2916.2012.05095.x

[50] T. Wang and T. Xu, “Effects of Vanadium Doping on Microstructures and Optical Properties of TiO2,” Ceram. Int., vol. 43, no. 1, pp. 1558-1564, 2017.

DOI: 10.1016/j.ceramint.2016.10.132

[51] D. Gu, Y, Qin, Y. Wen, T. Li, L. Qin, and H. J. Seo, “Electronic Structure and Optical Properties of V-Doped Bi4Ti3O12 Nanoparticles,” J. Alloys Compd., vol. 695, pp. 2224-2231, 2016.

DOI:10.1016/j.jallcom.2016.11.071

[52] H. X. Zhu, X. H. Wang, D. F. Zhou, H. Jiang, and X. M. Liu, “First-Principles Study on Electronic, Magnetic Properties and Optical Absoprtion of Vanadium Doped Rutile TiO2,” Phys. Lett. A., vol. 384, no. 26, pp. 1-7, 2020.

DOI: 10.1016/j.physb.2009.01.014

[53] Q. Sun, B. R. McBride, and Y. Liu, “(N3-, M5+) Co-Doping Strategies for The Development of TiO2-Based Visible Light Catalyst,” Res. Rev. Electrochem., vol. 8, no. 1, pp. 1-10, 2017.

[54] B. Tian and C. Li, “Flame Sprayed V-Doped TiO2 Nanoparticles with Enhaced Photocatalytic Activity under Visible Light Irradiation,” Chem. Eng. J., vol. 151, no. 1-3, pp. 220-227, 2019.

DOI: 10.1016/j.cej.2009.02.030

Refbacks

  • There are currently no refbacks.