Effect of Chitosan Concentration on Macroporous Chitosan-TPP Beads toward Turbidity, Dye Content, and COD of Sasirangan Wastewater
Abstract
This research was carried out to determine the effect of chitosan concentration in synthesising crosslinked tripolyphosphate (TPP) macropore beads on turbidity, dye content, and Chemical of Demand (COD) Sasirangan wastewater. Macroporous chitosan-TPP beads were synthesised from chitosan solution with various concentrations of 2%, 3%, 4%, and 5% and added NaHCO3 as a porogen, then dripped into 0.75% tripolyphosphate solution. It was further interacted with Sasirangan wastewater by adsorption method with its effect analysed by using the turbidity value, dye content, and COD. The results showed that beads with a 3% chitosan concentration were the most effective in reducing the turbidity, dye content, and COD value. Furthermore, using a more than 3% chitosan concentration indicates reduced effectiveness. Macroporous Chitosan-TPP beads were able to produce a decrease in turbidity, dye content and COD by 81.21%, 55.44%, and 59.37%.
Keywords
Full Text:
PDFReferences
[1] Arifin et al., “The Effect of Chitosan Dosage Againts Liquid Waste Water Color on ‘Oriens Handicraft’ Sasirangan Home Industry, Landasan Ulin,” J. Heal. Sci. Prev., vol. 1, no. 2, pp. 58–67, 2017.
doi: 10.29080/jhsp.v1i2.91
[2] U. Santoso et al., “Pengolahan Limbah Cair Sasirangan Melalui Kombinasi Metode Filtrasi dan Fitoremidiasi Sistem Lahan Basah Buatan Menggunakan Tumbuhan Air yang Berbeda,” EnviroScienteae, vol. 10, no. 3, pp. 157–170, 2014.
doi: 10.20527/es.v10i3.1978
[3] U. Irawati et al., “Pengolahan Limbah Cair sasirangan menggunakan Filter Arang Aktif Cangkang Kelapa Sawit Berlapiskan Kitosan setelah Koagulasi dengan FeSO4,” Sains dan Terap. Kim., vol. 5, no. 1, pp. 34–44, 2011.
doi: 10.20527/jstk.v5i1.2087
[4] Nurhayati and Agusman, “Edible film kitosan dari limbah udang sebagai pengemas pangan ramah lingkungan,” Squalen, vol. 6, no. 1, pp. 38–44, 2011.
Available: googlescholar
[5] B. O. D. Anggraeny et al. “Pembuatan kitosan makropori menggunakan garam dapur dan aplikasinya terhadap adsorpsi Methyl Orange,” Kim. Student J., vol. 1, no. 1, pp. 1–7, 2014.
Available: googlescholar
[6] M. A. Torres et al., “Characterisation of chemically modified chitosan microspheres as adsorbents using standard proteins (bovine serum albumin and lysozyme),” Brazilian J. Chem. Eng., vol. 24, no. 3, pp. 325–336, 2007.
doi: 10.1590/S0104-66322007000300003
[7] D. Ariyani et al., “Synthesis of Glutaraldehyde Crosslinked Superporous Chitosan with Polyvinyl Alcohol Addition for Peat Water Humic Acid Adsorption,” J. Wetl. Environ. Manag., vol. 3, no. 2, pp. 79–89, 2015.
doi: 10.20527/jwem.v3i2.19
[8] W. S. Wan Ngah et al., “Adsorption of humic acid from aqueous solutions on crosslinked chitosan-epichlorohydrin beads: Kinetics and isotherm studies,” Colloids Surfaces B Biointerfaces, vol. 65, no. 1, pp. 18–24, 2008.
doi: 10.1016/j.colsurfb.2008.02.007
[9] N. Gupta and H. Shivakumar, “Preparation and Characterisation of Superporous Hydrogels as pH-Sensitive Drug Delivery System for Pantoprazole Sodium,” Curr. Drug Deliv., vol. 6, no. 5, pp. 505–510, 2009.
doi: 10.2174/156720109789941722
[10] W. S. Wan Ngah et al., “Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and crosslinked chitosan beads,” Bioresour. Technol., vol. 96, no. 4, pp. 443–450, 2005.
doi: 10.1016/j.biortech.2004.05.022
[11] D. Ariyani et al., “Sintesis Beads Kitosan Terikat-Silang Tripoliosfat Dengan Penambahan Porogen Untuk Absorpsi Asam Humat,” J. Sains dan Terap. Kim., vol. 15, no. 1, p. 64, 2021.
doi: 10.20527/jstk.v15i1.9706
[12] S. Waidyanatha et al., “Formation of epichlorohydrin, a known rodent carcinogen, following oral administration of 1,3-dichloro-2-propanol in rats,” Chem. Res. Toxicol., vol. 27, no. 10, pp. 1787–1795, 2014.
doi: 10.1021/tx500239q
[13] J. Berger et al., “Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications,” Eur. J. Pharm. Biopharm., vol. 57, no. 1, pp. 35–52, 2004.
doi: 10.1016/S0939-6411(03)00160-7
[14] R. Nurmasari et al., “Kajian Sorpsi Zat Warna Safranin O Pada Sorben Beads Kitosan-Tripolifosfat,” J. Sains dan Terap. Kim., vol. 12, no. 1, p. 34, 2018.
doi: 10.20527/jstk.v12i1.4653
[15] M. I. Fwu-Long et al., “Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method,” J. Polym. Sci. Part B Polym. Phys., vol. 37, no. 14, pp. 1551–1564, 1999.
doi: 10.1002/(SICI)1099-0488(19990715)37:14<1551::AID-POLB1>3.0.CO;2-H
[16] M. S. Chiou and H. Y. Li, “Adsorption behavior of reactive dye in aqueous solution on chemical crosslinked chitosan beads,” Chemosphere, vol. 50, no. 8, pp. 1095–1105, 2003.
doi: 10.1016/S0045-6535(02)00636-7
[17] N. Annabi et al., “Controlling the porosity and microarchitecture of hydrogels for tissue engineering,” Tissue Eng. - Part B Rev., vol. 16, no. 4, pp. 371–383, 2010.
doi: 10.1089/ten.teb.2009.0639
[18] V. T. Mardila et al., “Pembuatan kitosan makropori menggunakan epichlorohydrin sebagai Cross-linker dan aplikasinya terhadap adsorpsi Methyl Orange,” Kim. Student J., vol. 1, no. 2, pp. 182–188, 2014.
Available: googlescholar
[19] B. R. Basuki and I. G. M. Sanjaya, “Sintesis Ikat Silang Kitosan dengan Glutaraldehid serta Identifikasi Gugus Fungsi dan Derajat Deasetilasinya Cross-linked Chitosan Synthesis Using Glutaraldehyde and Functional Group Identification as well as Its Deacetylation Degree,” Surabaya UNES, vol. 10 (1), no. 1, pp. 93–101, 2009.
Available: googlescholar
[20] M. Kurniasih, et al., “sintesis dan karakterisasi crosslink kitosan dengan tripolifosfat pH 3,” Molekul, vol. 6, no. 1, pp. 19–24, 2011.
doi: 10.20884/1.jm.2011.6.1.86
[21] R. D. Bhumkar and V. B. Pokharkar, “Studies on effect of pH on crosslinking of Chitosan with sodium tripolyphosphate: A technical note,” AAPS PharmSciTech, vol. 7, no. 2, pp. 2–7, 2006.
doi: 10.1208/pt070250
[22] F. Dolot et al., “Analisis Boraks Pada Nugget Olahan,” J. Ilm. Farm., vol. 5, no. 4, pp. 213–219, 2016.
doi: 10.35799/pha.5.2016.14004
[23] R. J. Fessenden and J. S. Fessenden, Kimia Organik, Jilid 1, 3rd ed. Erlangga, Jakarta, 1999.
Available: googlescholar
[24] M. C. Roberts, John D. and Caserio, Basic Principles of Organic Chemistry, Second. Benjamin, Inc. , Menlo Park, CA., 1977.
Available: googlescholar
Refbacks
- There are currently no refbacks.