The Effect of Energy Minimization on The Molecular Docking of Acetone-Based Oxindole Derivatives

Arif Fadlan, Yesaya Reformyada Nusantoro


In silico study by molecular docking, drug discovery, and virtual screening are useful for obtaining compounds with promising biological activity. The force fields energy minimization in molecular docking is the overall process to produce better geometry estimation and ligand-receptor affinity. In this study, the divide and conquer algorithm based on the Mikowski matrix in MarvinSketch and the conjugate gradient algorithm of Open Babel were used to minimise acetone-based oxindole derivatives in indoleamine 2,3-dioxygenase 1 (IDO1). The results showed that the binding energy produced by MarvinSketch was generally better than the binding energy obtained with Open Babel. The visualization of molecular docking results indicated that the poses and hydrogen bonding, halogen bonding and π-π interactions are different between MarvinSketch, Open Babel, and no energy minimization. The results revealed that energy minimization affects the molecular docking results.



Molecular Doking; Energy Minimization; MMFF94; Oxindole, IDO1

Full Text:



E. March-Vila, L. Pinzi, N. Sturm, A. Tinivella, O. Engkvist, H. Chen, & G. Rastelli, "On the integration of in silico drug design methods for drug repurposing.” Front. Pharmacol., vol. 8 (MAY), pp. 1–7. 2017.

DOI: 10.3389/fphar.2017.00298

E. H. B. Maia, L. C. Assis, T. A. de Oliveira, A. M. da Silva, & A. G. Taranto, "Structure-based virtual screening: From classical to artificial intelligence.” Front. Pharmacol., vol. 8 (April). 2020.

DOI: 10.3389/fchem.2020.00343

K. Roy, S. Kar, & R. N. Das, "Other related techniques" in Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment,” K. Roy, S. Kar, R. N. Das (eds), 2015a, pp. 357-425.


S. Perez & I. Tvaroska, "Carbohydrate-protein interactions: Molecular modelling insights" in advances in carbohydrate Chemistry and Biochemistry, Horton, D. (Ed). vol. 71, 2014, pp: 9-136.


K. Roy, S. Kar, & R. N. Das, "Computational chemistry," in Understanding The Basics of QSAR for Applications in Pharmaceutical Sciences Risk Assessment, K. Roy, S. Kar and R. N. Das (eds.), Elsevier, San Diego, 2015b, pp. 357-425.


N. L. Allinger, "Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms," J. Am. Chem. Soc., vol. 99, no. 25, pp. 8127–8134, 1977.

DOI: 10.1021/ja00467a001

T. Daggupati, K. N. Chitrala, R. Pamanji, & S. Yeguvapalli, "Molecular screening and analysis of novel therapeutic inhibitors against c-jun N-terminal kinase," Med. Chem. Res., vol. 26, pp. 2112–2118, 2017.

DOI: 10.1007/s00044-017-1919-5

H. Sugimoto, S. Oda, S.-i. Otsuki, T. Hino, T. Yoshida, & Y. Shiro, "Crystal structure of human indoleamine 2,3-dioxygenase: Catalytic mechanism of O2 incorporation by a heme-containing dioxygenase," Proc. Natl. Acade. Sci., vol. 103, no. 8, pp. 2611–2616, 2006.

DOI: 10.1073/pnas.0508996103

N. Novichikhina, I. Ilin, A. Taschilova, A. Sulimov, D. Kutov, I. Ledenyova, M. Krysin, K. Shikhaliev, A. Gantseva, E. Gantseva, N. Podoploleva, & V. Sulimov, "Synthesis, docking, and in vitro anticoagulant activity assay of hybrid derivatives of pyrrolo[3,2,1-ij]quinolin-2(1H)-one as new inhibitors of factor Xa and factor XIa," Molecules, vol. 25, pp. 1889, 2020.

DOI: 10.3390/molecules25081889

N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, & G. R. Hutchison, "Open Babel: An open chemical toolbox" J. Cheminformatics, vol. 3, no. 33, pp. 1–14, 2011.

DOI: 10.1186/1758-2946-3-33

S. Dallakyan & A. J. Olson, "Small-molecule library screening by docking with PyRx," in Chemical Biology: Methods in Molecular Biology, J. E. Hempel, C. H. Williams, C. C. Hong (Eds.), Springer, New York, 2015.

DOI: 10.1007/978-1-4939-2269-7_19

O. Trott & A. Olson, "AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading," J. Comput. Chem., vol. 31, no. 2, pp. 455–461, 2009.

DOI: 10.1002/jcc.21334

D. B. Kitchen, H. Decomez, J. R. Furr, & J. Bajorath, "Docking and scoring in virtual screening for drug discovery: Methods and applications," Nat. Rev. Drug Discov., vol. 3, no. 11, pp. 935–949, 2004.

DOI: 10.1038/nrd1549

G. Imre, G. Veress, A. Volford, & O. Farkas, "Molecules from the Minkowski space: An approach to building 3D molecular structures," J. Mol. Struct., vol. 666–667, pp. 51–59, 2003.

DOI: 10.1016/j.theochem.2003.08.013

D. Gentile, V. Patamia, A. Scala, M. T. Sciortino, A. Piperno, & A. Rescifina, "Putative inhibitors of SATS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study," Mar. Drugs, vol. 18, no. 4, 225, 2020.

DOI: 10.3390/md18040225

R. Prihartiningtyas, R. R. Syahdi, M. Y. Putra, & A. Yanuar, "Establishment of a 3D-structure database for chemical compounds in Indonesian sponges," Pharmacogn. J., vol. 11, no. 6, pp. 1211–1218, 2019.

DOI: 10.5530/pj.2019.11.188

T. Cormen C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, The MIT Press, Massachusetts, 2009.

ISBN: 9780262533058

M. Hestenes & E. Stiefel, "Methods of conjugate gradients for solving linear systems," J. Res. Nat. Bur. Standa., vol. 49, no. 6, pp. 409-436, 1952.

Google Scholar

Ajay & M. Murcko, "Computational methods to predict binding free energy in ligand-receptor complexes," J. Med. Chem., vol. 38, no. 26, pp. 4953–4967, 1995.

DOI: 10.1021/jm00026a001

T. Siebenmorgen & M. Zacharias, "Computational prediction of protein-protein binding affinities," WIREs Comput. Mol. Sci., vol. 10, no. e1448, pp. 1–18, 2020.

DOI: 10.1002/wcms.1448


  • There are currently no refbacks.