The bioactive of Pinus merkusii needle and bark extract as antioxidantand anti-aging

Febryana Ramadhani, Ermi Girsang, Florenly Florenly

Abstract

Pinus merkusii is a native pine species to Southeast Asia and has used as an oleoresins source and raw material for pulp and paper industries. This plant also possesses several biological activities, such as anti-inflammatory and larvicidal activity. This study aims to evaluate the antioxidant and antiaging activity of P. merkusii needle and bark. The qualitative phytochemical screening was used to evaluate the presence of secondary metabolites compounds. DPPH (2,2-diphenyl-1-picryl-hydrazyl) methods evaluated the antioxidant activity, and an anti-tyrosinase assay was used to evaluate the antiaging activity. Phytochemical analysis showed flavonoids, phenols, alkaloids, tannins, and terpenoids in both extracts. Bark extract showed the presence of saponins and triterpenoids, while needle extract possesses steroids. The antioxidant activity (IC50) of P. merkusii bark extract was 59.32 ± 1.74 µg/mL, stronger than needle extract (68.67 ± 1.47 µg/mL). Also, the bark extract showed higher inhibitory activity of tyrosinase (IC50) 74.97 ± 1.54 µg/mL than needle extract (96.08 ± 1.77 µg/mL). From this investigation, P. merkusii bark extracts appeared to have more potential as a natural source of antioxidants and antiaging and might be beneficial in these subjects.

Keywords

Pinus merkusi; Antioxidant activity; Anti-aging; Tyrosinase Inhibition

Full Text:

PDF

References

L.Wu, C.Chen, C. Cheng, H. Dai, Y.Ai, C. Lin, & Y.Chung, "Evaluation of Tyrosinase Inhibitory, Antioxidant, Antimicrobial, and Antiaging Activities of Magnolia officinalis Extracts after Aspergillus niger Fermentation," Biomed Res. Int., vol. 2018, p. 5201786, 2018,

doi: 10.1155/2018/5201786.

P. Limtrakul, S. Yodkeeree, P. Thippraphan, W. Punfa, and J. Srisomboon, "Antiaging and tyrosinase inhibition effects of Cassia fistula flower butanolic extract," BMC Complement. Altern. Med., vol. 16, no. 1, p. 497, 2016,

doi: 10.1186/s12906-016-1484-3.

A. Tito, M. Bimonte, A. Carola, A. De Lucia "An oil-soluble extract of Rubus idaeus cells enhances hydration and water homeostasis in skin cells.," Int. J. Cosmet. Sci., vol. 37, no. 6, pp. 588–594, Dec. 2015,

doi: 10.1111/ics.12236.

B. Bose, H. Choudhury, P. Tandon, and S. Kumaria, "Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin-aging related enzyme inhibitory activities of Malaxis acuminata, a threatened orchid of nutraceutical importance.," J. Photochem. Photobiol. B., vol. 173, pp. 686–695, Aug. 2017,

doi:10.1016/j.jphotobiol.2017.07.010.

H.Zhong, C.Hong, Z. Han, S. J.Hwang, B.Kim, Z. Xu, & C.Zou, "Erjingwan Extracts Exert Antiaging Effects of Skin through Activating Nrf2 and Inhibiting NF-κB," Evid Based Complement Altern". Med, vol. 2019, p. 5976749, 2019,

doi: 10.1155/2019/5976749.

R. Szymanska, P. Pospíšil, and J. Kruk, “Plant-derived antioxidants in disease prevention 2018,” Oxid. Med. Cell. Longev., vol. 2018, pp. 2–4, 2018, doi: 10.1155/2018/2068370.

P. T. B. Tu and S. Tawata, "Antioxidant, antiaging, and anti-melanogenic properties of the essential oils from two varieties of Alpinia zerumbet," Molecules, vol. 20, no. 9, pp. 16723–16740, 2015,

doi: 10.3390/molecules200916723.

G.J. Fisher, S. Kang, J. Varani, Z. Bata-Csorgo "Mechanisms of photoaging and chronological skin aging," JAMA Dermatol., vol. 138, no. 11, pp. 1462–1470, 2002,

doi: 10.1001/archderm.138.11.1462.

M. S.Shon,, Y. Lee, J. H.Song, T.Park, J. K.Lee,, M.Kim, & G. N.Kim, "Antiaging Potential of Extracts Prepared from Fruits and Medicinal Herbs Cultivated in the Gyeongnam Area of Korea.," Prev. Nutr. food Sci., vol. 19, no. 3, pp. 178–186, Sep. 2014,

doi: 10.3746/pnf.2014.19.3.178.

H. Moini, L. Packer, and N.-E. L. Saris, "Antioxidant and Prooxidant Activities of α-Lipoic Acid and Dihydrolipoic Acid," Toxicol. Appl. Pharmacol., vol. 182, no. 1, pp. 84–90, 2002,

doi: 10.1006/taap.2002.9437.

Y. Cai, Q. Luo, M. Sun, and H. Corke, "Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer.," Life Sci., vol. 74, no. 17, pp. 2157–2184, Mar. 2004,

doi: 10.1016/j.lfs.2003.09.047.

Y. A. Jang, B. A. Kim, and J. T. Lee, "Antioxidative and Antiaging Effects of Pinus Rigida Mill. Ethyl Acetate Extract on the Human Dermal Fibroblast Cell Line CCD-986sk Damaged by Ultraviolet B Radiation," Biomed J Sci Tech Res, vol. 12, no. 4, pp. 9399–9405, 2019,

doi: 10.26717/bjstr.2019.12.002285.

J. H. Chung, "Photoaging in Asians," Photodermatol. Photoimmunol. Photomed., vol. 19, no. 3, pp. 109–121, 2003,

doi: 10.1034/j.1600-0781.2003.00027.x.

P. C. Durai, D. M. Thappa, R. Kumari, and M. Malathi, "Aging in elderly: chronological versus photoaging.," Indian J. Dermatol., vol. 57, no. 5, pp. 343–352, Sep. 2012,

doi: 10.4103/0019-5154.100473.

V. D. Longo and C. E. Finch, "Evolutionary medicine: from dwarf model systems to healthy centenarians?," Science (80-. )., vol. 299, no. 5611, pp. 1342–1346, Feb. 2003,

doi: 10.1126/science.1077991.

E.Makrantonaki, T. C.Brink, V.Zampeli, R. M.Elewa, B.Mlody, A. M.Hossini, & C. C.Zouboulis, "Identification of Biomarkers of Human Skin Ageing in Both Genders. Wnt Signalling - A Label of Skin Ageing?," PLoS One, vol. 7, no. 11, p. e50393, Nov. 2012,

doi: 10.1126/science.1077991.

L. M. Uwa, "The Antiaging Efficacy of Antioxidants," Curr Trends Biomed. Eng Biosci, vol. 7, no. 4, pp. 66–68, 2017,

doi: 10.19080/CTBEB.2017.07.555716.

E. N. . Cooling, "Fast Growing Timber Tree of the Lowland Tropics No. 4 Pinus merkusii," Oxford, 1968.

Google Scholar

A. Wijayanto, S. Dumarçay, C. Gérardin-Charbonnier, R. K. Sari, W. Syafii, and P. Gérardin, “Phenolic and lipophilic extractives in Pinus merkusii Jungh. et de Vries knots and stemwood,” Ind. Crop. Prod., vol. 69, pp. 466–471, 2015, doi: 10.1016/j.indcrop.2015.02.061.

A. Cunningham, "Pine resin tapping techniques used around the world," in Pine resin: biology, chemistry and applications, vol. 661, no. 2, A. G. Fett-Neto and Rodrigues-Corrêa, Eds. Research Signpost, 2012, pp. 1–8.

Google Scholar

B. Wiyono, S. Tachibana, and D. Tinambunan, “Chemical Composition of Indonesian Pinus merkusii Turpentine oils, Gum Oleoresins and Rosins from Sumatra and Java,” IJFR - Indones. J. For. Res., vol. 9, no. 1, pp. 7–14, 2006,

doi: 10.20886/ijfr.2006.3.1.7-17.

M. R. Hasan, M. N. Islam, and M. R. Islam, "Phytochemistry, pharmacological activities and traditional uses of Emblica officinalis: A review," Int. Curr. Pharm. J., vol. 5, no. 2, pp. 14–21, 2016.

doi: 10.3329/icpj.v5i2.26441.

A. Sharma, L. Sharma, and R. Goyal, "A review on himalayan pine species: Ethnopharmacological, phytochemical and pharmacological aspects," Pharmacogn. J., vol. 10, no. 4, pp. 611–619, 2018,

doi: 10.5530/pj.2018.4.100.

İ. Tümen, E. K. Akkol, H. Taştan, I. Süntar, and M. Kurtca, "Research on the antioxidant, wound healing, and anti-inflammatory activities and the phytochemical composition of maritime pine (Pinus pinaster Ait)," J. Ethnopharmacol., vol. 211, pp. 235–246, 2018,

doi: 10.1016/j.jep.2017.09.009.

A. Arel, D. Dira, and A. Setiawati, “Isolasi Senyawa Utama Kulit Batang Tumbuhan Pinus Dari Ekstrak Etil Asetat,” JIF - J. Ilm. Farm., vol. 12, no. 2, pp. 27–35, 2016,

doi: 10.20885/jif.vol12.iss2.art3.

A. N. Panche, A. D. Diwan, and S. R. Chandra, "Flavonoids: an overview," J. Nutr. Sci., vol. 5, pp. e47–e47, Dec. 2016,

doi: 10.1017/jns.2016.41.

M. V. da Silva, N. G. de Moura Jr, A. B. Motoyama, and V. M. Ferreira, "A review of the potential therapeutic and cosmetic use of propolis in topical formulations," J Appl Pharm Sci, vol. 10, no. 1, pp. 131–141, 2020,

doi:10.7324/JAPS.2020.101018.

R. C. G. Corrêa, R. M. Peralta, C. W. I. Haminiuk, G. M. Maciel, A. Bracht, and I. C. F. R. Ferreira, "New phytochemicals as potential human antiaging compounds: Reality, promise, and challenges.," Crit. Rev. Food Sci. Nutr., vol. 58, no. 6, pp. 942–957, Apr. 2018,

doi:10.1080/10408398.2016.1233860.

S. Nur, R. Rumiyati, and E. Lukitaningsih, "Screening of Antioxidants, Antiaging and Tyrosinase Inhibitory Activities of Ethanolic and Ethyl Acetate Extracts of Fruit Flesh and Fruit Peel Langsat (Lansium domesticum Corr) In Vitro," Trad. Med. J., vol. 22, no. 1, pp. 63–72, 2017,

doi: 10.22146/tradmedj.24342.

H. Nurhasnawati, R. Sundu, S. Sapri, R. Supriningrum, H. Kuspradini, and E. T. Arung, "Antioxidant activity, total phenolic and flavonoid content of several indigenous species of ferns in East Kalimantan, Indonesia," Biodiversitas, vol. 20, no. 2, pp. 576–580, 2019,

doi: 10.13057/biodiv/d200238.

B. . Akinpelu, O. . Igbeneghu, A. . Awotunde, E. . Iwalewa, and O. . Oyedapo, "Antioxidant and antibacterial activities of saponin fractions of Erythropheleum suaveolens (Guill. and Perri.) stem bark extract," Sci. Res. Essays, vol. 18, no. 9, pp. 826–833, 2014,

doi: 10.5897/SRE2014.5844.

A. Godghate and R. Sawant, "Qualitative Phytochemical Analysis of Chloroform Extract Of Leaves of Adhatoda Vasica nees ," RASᾹYAN J Chem, vol. 6, no. 2, pp. 107–110, 2013,

Googel Scholar

H. O. Edeoga, D. E. Okwu, and B. O. Mbaebie, "Phytochemical constituents of some Nigerian medicinalplants," Afr. J. Biotechnol., vol. 4, no. 7, pp. 685–688, 2005,

doi: 10.5897/AJB2005.000-3127.

T. H. A. Alabri, A. H. S. Al Musalami, M. A. Hossain, A. M. Weli, and Q. Al-Riyami, "Comparative study of phytochemical screening, antioxidant and antimicrobial capacities of fresh and dry leaves crude plant extracts of Datura metel L," J. King Saud Univ., Sci., vol. 26, pp. 237–243, 2014,

doi: 10.1016/j.jksus.2013.07.002.

I. Koodkaew and P. Sukonkhajorn, "Anti-tyrosinase and antioxidant activities of Impatiens balsamina L.," Songklanakarin J. Sci. Technol., vol. 41, no. 3, pp. 868–692, 2019,

doi: 10.14456/sjst-psu.2019.63.

A. R. Jassbi, "Chemistry and biological activity of secondary metabolites in Euphorbia from Iran," Phytochemistry, vol. 67, no. 18, pp. 1977–1984, 2006, doi: 10.1016/j.phytochem.2006.06.030..

R. A. Hussein, "Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants," A. A. E.-A. E.-P. F. Builders, Ed. Rijeka: IntechOpen, 2019, p. Ch. 2.

doi: 10.5772/INTECHOPEN.76139..

W. P. Jones and A. D. Kinghorn, "Extraction of plant secondary metabolites," in Methods in Biotechnology, Vol. 20, Natural Products Isolation, 2nd ed., vol. 864, S. D. Sarker, Z. Latif, and A. I. Gray, Eds. Totowa: Humana Press Inc., pp. 341–366, 2012.

doi: 10.1007/978-1-61779-624-1_13..

A. Hermansah, H. Harlia, and T. A. Zahara, “Skrining Fitokimia danUji Aktivitas Antioksidan Ekstrak Kulit batang Laban(Vitex pubescens Vahl),” J. Kim. Khatulistiwa, vol. 4, no. 2, pp. 67–71, 2015.

">Google Scholar

Q. Yu, J. Duan, N. Yu, and L. Fan, "Enhancing the antityrosinase activity of saponins and polyphenols from Asparagus by hot air coupled with microwave treatments," LWT, vol. 124, p. 109174, 2020,

doi:10.1016/j.lwt.2020.109174

F. N. Maslakhah, R. Mutiah, A. Hakim, R. Aprinda, and A. Suryadinata, “Metabolite Profiling Bagian Akar, Batang, Daun, dan Biji Helianthus annuus L. Menggunakan Instrumen UPLC-MS,” MPI (Media Pharm. Indones., vol. 2, no. 2,pp. 64–81, Jan. 2019,

doi:10.24123/mpi.v2i2.1361

D. Tungmunnithum, A. Thongboonyou, A. Pholboon, and A. Yangsabai, "Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview," Med. (Basel, Switzerland), vol. 5, no. 3, p. 93, 2018,

doi: 10.3390/medicines5030093.

C. E. Pratini and P. Florentina, “Ekstraksi Tanin dari Kulit Kayu Pinus dengan Bantuan Microwave:Pengaruh Daya Microwave, Jenis Pelarut dan Waktu ekstraksi,” J. Integr. Proses, vol. 6, no. 4, pp. 155–161, 2017,

doi: 10.36055/jip.v6i4.2429.

P. Ferreira-Santos, Z.Genisheva , C.Botelho, J.Santos, C.Ramos, J.Teixeira, & C.M. Rocha, "Unravelling the Biological Potential of Pinus pinaster Bark Extracts," Antioxidants, vol. 9, no. 4. 2020,

doi:10.3390/antiox9040334.

T. Venkatesan, Y. W. Choi, and Y. K. Kim, "Effect of an extraction solvent on the antioxidant quality of Pinus densiflora needle extract," J. Pharm. Anal., vol. 9, no. 3, pp. 193–200, 2019,

doi:10.1016/j.jpha.2019.03.005.

S. Kim, S. Park, J. Lee, M. Chang, Y. Chung, and T.-K. Lee, "Biochemical Compositions and Biological Activities of Extracts from 3 Species of Korean Pine Needles," J. Food Nutr. Res., vol. 5, no. 1, pp. 31–36, 2017,

doi:10.12691/jfnr-5-1-6.

L. Panzella and A. Napolitano, "Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: Recent advances," Cosmetics, vol. 6, no. 4, 2019,

doi:10.3390/cosmetics6040057.

N. P. Nirmal and S. Benjakul, "Inhibitory effect of mimosine on polyphenoloxidase from cephalothoraxes of pacific white shrimp (Litopenaeus vannamei)," J. Agric. Food Chem., vol. 59, no. 18, pp. 10256–10260, 2011,

doi:10.1021/jf201603k.

E. W. C.Chan, Y. Y. Lim, L. F.Wong, F. S.Lianto, S. K.Wong, K. K.Lim, & T. Y.Lim, , Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species," Food Chem., vol. 109, no. 3, pp. 477–483, 2008,

doi:10.1016/j.foodchem.2008.02.016.

W. M.Chai, Q. Huang, M. Z.Lin, C.Ou-Yang, W. Y. Huang, Y. X.Wang, &H. L. Feng, "Condensed Tannins from Longan Bark as Inhibitor of Tyrosinase: Structure, Activity, and Mechanism," J. Agric. Food Chem., vol. 66, no. 4, pp. 908–917, 2018,

doi: 10.1021/acs.jafc.7b05481.

Refbacks

  • There are currently no refbacks.