Cellulose Compound of Cacao Waste and Chemical Composition of Cacao Vinegar with GC-MS Method

Mohammad Wijaya. M, Muhammad Wiharto, Muhammad Anwar


Potential of cacao resources at Indonesian is very dependent on the production of cacao produced by farmers and plantation availability. However, the cacao processing results are still not optimal to increase the cacao production. This is due to the disruption of pests and the number of cacao farmers over land functions for fast growing plants. Processing cacao produced cacao waste and with the use of pyrolysis technology is able to cope with the accumulation of plantation waste. This combustion results in liquid smoke of cacao (cacao vinegar) into distillate, charcoal. This study used pyrolysis temperature between 100-500 °C. The aim of this research is to analyze the cocoa waste and the results are cellulose content 17,27%, lignin 52,02% and hemicellulose 19,56%. The results of GC-MS analysis for cacao vinegar of Distric Wajo are acetic acid, n butane, methyl ester, propanoic acid, butanoic acid, cyclopenanone, 2 methyl pyridine, acetyloxy 2 propanone, butyrolactone, tetrahydro 2 furan methanol, 2,3 dimethyl 2 cyclopentene 1 on and Mequinol. The water content of the charcoal of cacao shell from Wajo district is 3.42%. The analysis results of the bound carbon content of activated charcoal of cacao shell is 54.45%. The EDS analysis for cacao shell from Wajo district resulted in C: 61.12%, O: 36.65%, Si: 0.59%, P: 1.48% and Al: 0.17%. Utilization of cocoa shell waste using pyrolysis technology can reduce carbon emissions to the environment. So that the development of everything can continue and the sustainability of forest remain sustainable.



Cacao; Cacao shell; celluloce; Cacao vinegar

Full Text:



Ziegenhals, K. et al., 2009. “Polycyclic aromatic hydrocarbons (PAH) in chocolate in the Germany market”. Journal für Verbraucherschutz und Lebensmittelsicherheit 4: 128-135, 2009.

Noor, N.M. et al., “Slow Pyrolysis of Cassava Wastes for Biochar and Characterization”. Iranica J. Energy & Environmental 3. 60-65, 2012.

Gwenzi, W. et al., “Biochar production and applications in sub-Saharan Africa: Opportunities, constraints, risks and uncertainties”. Journal of Environmental Management 150C, 250–261, 2014.

Wang, D. et al., “Reduction pf the Variety pf Phenolic Compound in Bio Oil via the Catalytic Pyrolysis”. J.Biores 8(3), 4014-4021, 2014.

Kartal SN et al., “Preliminary Evaluation of Fungicidal and Termiticidal Activity of Filtrates from Biomassa Sharry Fuel Production”. J Biores Technol 95 : 41-47, 2004

Liu Y, et al., “Analytical Pyrolysis Pathways of Guaiacyl Glycerol β guaiayl Ether by PC-Gy/MS”. J. Bioresources 11(3), 5816-5828, 2016.

Akalin MK and Karagoz S. “Pyrolysis of Tobacco Residue : Part 1. Thermal”. J. Biores 6(2) : 1520-1531, 2011.

Timar, MC, et al., “Color and FTIR Analysis of Chemical Changes in Beech Wood (Fagus sylvatica L), after Light Steaming and Heat Treatment in Two Different Environmental”. J. Bioresources 11(4), 8325-8343, 2016

Wijaya. Mohammad, “Karakterisasi dan Identifikasi Komposisi Kimia Serbuk Kayu Pinus dengan Metode GC MS”. Prosiding Seminar Nasional XVIII. MAPEKI, Bandung, 4-5 November ISSN 2407-2036. Hal. 221-228, 2015

Zhu D. et al., “Fabrication and mehanical Properties of SiC/SiC-Si Composites by Liquid Si Infiltration using Pyrolysed Rice Husks and SIC Powder as Precursors”. 9(2) 2572-2583, 2014

Chen Q. et al., “Charcterization of Microcrystaline Cellulose after Pre-treatment with Low Concentration of Ionic Liquid H2O for a Pyrolysis Process”. J. Bioresources, 11(1), 159-173, 2016.

Guo M, and Bi J., “Pyrolysis Charac-teristics of Corn Stalk with Solid Heat Carrier”. J. Bioresources. 10(3), 3839-3851, 2015.


  • There are currently no refbacks.