Green Synthesis of Silver Nanoparticles using Lemongrass Leaf (Cymbopogon citratus) Extract as a Reductant for Novel Colorimetric Mercury(II) Detection
Abstract
Mercury(II) contamination in water poses serious risks to human health, requiring rapid detection. This study develops a fast colorimetric sensor based on silver nanoparticles (AgNPs) synthesized using lemongrass (Cymbopogon citratus) leaf extract as a green reducing agent. Synthesis conditions were optimized, the AgNPs were characterized, and analytical performance was validated using standard parameters. Sensor responses were monitored by UV Vis spectroscopy through changes in the surface plasmon resonance (SPR) band and quantified from absorbance variations. The optimum synthesis produced a reddish brown AgNP colloid at 45 minutes, 3 mM AgNO3, and 10% lemongrass extract. The nanoparticles showed a maximum absorption at 432 nm and an average size of 150.8 nm. Validation results indicate excellent selectivity for Hg2+ and a pronounced change in the overall SPR signal at 600 ppm Hg2+. The method was linear over 0 to 0.8 ppm Hg2+ with R2 = 0.9988 (y = 0.04x + 0.0722). The limits of detection and quantification were 3.681 × 10^-9 ppm and 1.115 × 10^-8 ppm, respectively. Molar absorptivity reached 10.84 × 10^3 L mol^-1 cm^-1 at 416 nm. These results demonstrate that lemongrass mediated AgNPs provide a simple, rapid, and sensitive platform for mercury detection in water.
Keywords
Full Text:
PDFReferences
[1] Kementerian Lingkungan Hidup dan Kehutanan, “Peraturan Pemerintah Republik Indonesia No. 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup.” Sekretariat Negara, Jakarta, 2021.
[2] W. C. Nugraha, Y. Ishibashi, and K. Arizono, “Assessment of heavy metal distribution and contamination in the sediment of the Ciujung Watershed, Banten Province, Indonesia,” J Mater Cycles Waste Manag, vol. 25, no. 5, pp. 2619–2631, Sep. 2023, doi: 10.1007/s10163-023-01661-4
[3] A. Khatoon, J. A. Syed, A. R. Solangi, A. Mallah, and Sirajuddin, “Mechanistic insights of mercury ion detection and its influence on time monitored hydrodynamic size of Capsicum Annumm C derived silver nanoparticles during colorimetric nano-sensing,” Optik (Stuttg), vol. 325, p. 172237, Apr. 2025 (Early Access), doi: 10.1016/j.ijleo.2025.172237
[4] S. Kokilavani et al., “Highly selective and sensitive tool for the detection of Hg(II) using 3-(Trimethoxysilyl) propyl methacrylate functionalized Ag-Ce nanocomposite from real water sample,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 242, p. 118738, Dec. 2020, doi: 10.1016/j.saa.2020.118738
[5] G. Ghodake et al., “Gallic acid-functionalized silver nanoparticles as colorimetric and spectrophotometric probe for detection of Al3+ in aqueous medium,” Journal of Industrial and Engineering Chemistry, vol. 82, pp. 243–253, Feb. 2020, doi: 10.1016/j.jiec.2019.10.019
[6] Y. Wang et al., “Facile and Green Fabrication of Carrageenan-Silver Nanoparticles for Colorimetric Determination of Cu2+ and S2−,” Nanomaterials, vol. 10, no. 1, p. 83, Jan. 2020, doi: 10.3390/nano10010083
[7] G. Franci et al., “Silver Nanoparticles as Potential Antibacterial Agents,” Molecules, vol. 20, no. 5, pp. 8856–8874, May 2015, doi: 10.3390/molecules20058856
[8] J. Hernandez-Sandoval, G. H. Garza-Elizondo, A. M. Samuel, S. Valtiierra, and F. H. Samuel, “The ambient and high temperature deformation behavior of Al–Si–Cu–Mg alloy with minor Ti, Zr, Ni additions,” Mater Des, vol. 58, pp. 89–101, Jun. 2014, doi: 10.1016/j.matdes.2014.01.041
[9] A. L. Yulifianti, B. Eristi, M. Puspita, and D. Handayani, “Process Engineering Communication Media and Appropriate Technology for Ginger Pulp Filtration Using Filter Press,” METANA, vol. 15, no. 2, pp. 43–48, Nov. 2019, doi: 10.14710/metana.v15i2.25086
[10] A. Rautela, J. Rani, and M. Debnath (Das), “Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms,” J Anal Sci Technol, vol. 10, no. 1, p. 5, Dec. 2019, doi: 10.1186/s40543-018-0163-z
[11] R. A. Syarif, F. Faradiba, A. Tenri, M. Khaira, and N. Nirwana, “GC-MS Analysis of Lemongrass with Various Extraction Methods,” Jurnal Fitofarmaka Indonesia, vol. 10, no. 3, pp. 1–6, 2023, doi: 10.33096/jffi.v10i3.1108
[12] L. U. Khasanah, S. Ariviani, E. Purwanto, and D. Praseptiangga, “Chemical composition and citral content of essential oil of lemongrass (Cymbopogon citratus (DC.) Stapf) leaf waste prepared with various production methods,” J Agric Food Res, vol. 19, p. 101570, Mar. 2025 (Early Access), doi: 10.1016/j.jafr.2024.101570
[13] S. J. Nadaf et al., “Green synthesis of gold and silver nanoparticles: Updates on research, patents, and future prospects,” OpenNano, vol. 8, p. 100076, Nov. 2022, doi: 10.1016/j.onano.2022.100076
[14] S. N. Nacer et al., “Phytochemical screening, antioxidant, antibacterial, and antifungal properties of the Cymbopogon citratus methanolic extract,” Pharmacological Research - Natural Products, vol. 5, p. 100094, Dec. 2024 (Early Access), doi: 10.1016/j.prenap.2024.100094
[15] A. Jayuska and L. Destiarti, “Bioactivity of Kitchen Lemongrass Essential Milky (Cymbopogon citratus) Stapf against Termites (Coptotermes curvignathus sp),” Journal of Equatorial Chemistry, vol. 7, no. 3, pp. 47–55, 2018, Available: https://pubs.aip.org/aip/acp/article/1927/1/030007/757500/Bioactivity-of-essential-oil-from-lemongrass. [Accessed: Nov. 21, 2025]
[16] R. Suárez-López, V. F. Puntes, N. G. Bastús, C. Hervés, and C. Jaime, “Nucleation and growth of gold nanoparticles in the presence of different surfactants. A dissipative particle dynamics study,” Sci Rep, vol. 12, no. 1, p. 13926, Aug. 2022, doi: 10.1038/s41598-022-18155-2
[17] S. Islam, S. Bairagi, and M. R. Kamali, “Review on green biomass-synthesized metallic nanoparticles and composites and their photocatalytic water purification applications: Progress and perspectives,” Chemical Engineering Journal Advances, vol. 14, p. 100460, May 2023, doi: 10.1016/j.ceja.2023.100460
[18] A. M. Sivalingam and A. Pandian, “Characterization of silver nanoparticles (AgNPs) synthesized using polyphenolic compounds from Phyllanthus emblica L. and their impact on cytotoxicity in human cell lines,” Carbohydrate Polymer Technologies and Applications, vol. 8, p. 100535, Dec. 2024, doi: 10.1016/j.carpta.2024.100535
[19] Y. Pratiwi, Y. Yusmaniar, and N. Nurhasanah, “Biosynthesis of Poly Acrylic Acid (PAA) Modified Silver Nanoparticles, Using Basil Leaf Extract (Ocimum basilicum L.) for Heavy Metal Detection,” JKPK (Jurnal Kimia dan Pendidikan Kimia), vol. 8, no. 3, p. 323, Dec. 2023, doi: 10.20961/jkpk.v8i3.78641
[20] Y. Pratiwi, A. Widyaresti, T. Hadinugrahaningsih, E. V. Nanda, and D. N. Anisa, “Synthesis of Poly Acrylic Acid (PAA) Modified Silver Nanoparticles, Using Trisodium Citrate for Heavy Metal Detection,” JKPK (Jurnal Kimia dan Pendidikan Kimia), vol. 9, no. 3, pp. 514–533, Dec. 2024, doi: http://dx.doi.org/10.20961/jkpk.v9i3.91340
[21] P. Dhanyasree, K. V. Neenu, D. Anna David, P. M. Sabura Begum, and K. Yoosaf, “An eco-friendly Polymer-Silver nanocomposite film for simultaneous sensing and removal of mercury from water,” Microchemical Journal, vol. 207, p. 112188, Dec. 2024 (Early Access), doi: 10.1016/j.microc.2024.112188
[22] A. Tazi, A. Zinedine, J. M. Rocha, and F. Errachidi, “Review on the pharmacological properties of lemongrass (Cymbopogon citratus) as a promising source of bioactive compounds,” Pharmacological Research - Natural Products, vol. 3, p. 100046, Jun. 2024, doi: 10.1016/j.prenap.2024.100046
[23] P. Bélteky et al., “Are Smaller Nanoparticles Always Better? Understanding the Biological Effect of Size-Dependent Silver Nanoparticle Aggregation Under Biorelevant Conditions,” Int J Nanomedicine, vol. Volume 16, pp. 3021–3040, Apr. 2021, doi: 10.2147/IJN.S304138
[24] J. Dolai, K. Mandal, and N. R. Jana, “Nanoparticle Size Effects in Biomedical Applications,” ACS Appl Nano Mater, vol. 4, no. 7, pp. 6471–6496, Jul. 2021, doi: 10.1021/acsanm.1c00987
[25] A. Singh, V. A. Chavan, P. Ariya, B. Udaynadh, and E. Adithi, “Nanomaterial Characterization Techniques,” in Futuristic Trends in Chemical Material Sciences & Nano Technology Volume 3 Book 13, Iterative International Publishers, Selfypage Developers Pvt Ltd, 2024, pp. 18–45. doi: 10.58532/V3BECS13P1CH2
[26] C. Tyavambiza, A. M. Elbagory, A. M. Madiehe, M. Meyer, and S. Meyer, “The Antimicrobial and Anti-Inflammatory Effects of Silver Nanoparticles Synthesised from Cotyledon orbiculata Aqueous Extract,” Nanomaterials, vol. 11, no. 5, p. 1343, May 2021, doi: 10.3390/nano11051343
[27] Y. Zhang, S. Prabakar, and E. C. Le Ru, “Coadsorbed Species with Halide Ligands on Silver Nanoparticles with Different Binding Affinities,” The Journal of Physical Chemistry C, vol. 126, no. 20, pp. 8692–8702, May 2022, doi: 10.1021/acs.jpcc.2c01092
[28] S. Kasim, P. Taba, Ruslan, and R. Anto, “Sintesis Nanopartikel Perak Menggunakan Ekstrak Daun Eceng Gondok (Eichornia crassipes) Sebagai Bioreduktor,” KOVALEN: Jurnal Riset Kimia, vol. 6, no. 2, pp. 126–133, Sep. 2020, doi: 10.22487/kovalen.2020.v6.i2.15137
[29] N. Riveli, “Dynamic Light Scattering Simulation to Investigate the Effect of Wavelength on Particle Size Measurement Accuracy,” Jurnal Material dan Energi Indonesia, vol. 13, no. 01, p. 39, Aug. 2023, doi: 10.24198/jme.v13i01.49188
[30] N. N. Trisnawati, I. G. A. K. S. P. Dewi, P. P. V Suari, and N. P. A. Krismayanti, “Validation of Metode Mercury Test using Inductively Coupled Plasma Emission Spectrometry (ICPE) 9000,” Indonesian E-Journal of Applied Chemistry, vol. 9, no. 1, pp. 24–28, Aug. 2021.
[31] A. Aminu and S. A. Oladepo, “Fast Orange Peel-Mediated Synthesis of Silver Nanoparticles and Use as Visual Colorimetric Sensor in the Selective Detection of Mercury(II) Ions,” Arab J Sci Eng, vol. 46, no. 6, pp. 5477–5487, Jun. 2021, doi: 10.1007/s13369-020-05030-3Refbacks
- There are currently no refbacks.






