Chitosan-Silica (CS/Sc) Composites as Promising Adsorbents for Fe(III) Removal in Water Purification

Yulida Amri, Fakhira Khairana, Ida Ratna Nila, Rahmatul Fajri

Abstract

Fe(III) contaminated water has become a serious environmental concern, creating a need for effective and affordable adsorbents. This study evaluates the performance of chitosan silica (CS/Sc) composites for Fe(III) removal. CS/Sc composites were synthesized via a sol-gel route by varying the volume ratio of 1% chitosan to 5% silica. The ratio significantly influenced surface morphology. The 4:3 composition showed silica dominance with an inhomogeneous surface, while the 4:4 composition exhibited a more porous and homogeneous structure. The 4:5 composition yielded the most homogeneous and porous surface, exhibiting increased Si and N signals, which indicate a stronger interaction between chitosan and silica. Fe(III) adsorption tests were conducted at pH 2. Both adsorption capacity (q) and adsorption efficiency (η) increased with increasing silica proportion. The CS/Sc 4:3 composite showed an adsorption capacity q of 0.391 mg g⁻¹ and an adsorption efficiency η of 5.211%. The 4:4 composite reached q of 2.701 mg g⁻¹ and η of 36.012%. The highest performance was obtained with the 4:5 composite, yielding a q of 3.266 mg g⁻¹ and an η of 43.542%. These results demonstrate that the CS/Sc composite with a 4:5 ratio is the most promising formulation for Fe(III) removal and water purification applications. The novelty of this work lies in the targeted application of CS/Sc composites for Fe(III) adsorption, which has been rarely reported, and in providing insight into how compositional variation affects structure and adsorption performance

Keywords

Composite; Chitosan; Silica; Fe (III); Adsorbent

Full Text:

PDF

References

[1] M. S. Sankhla, M. Kumari, M. Nandan, R. Kumar, and P. Agrawal, “Heavy Metals Contamination in Water and their Hazardous Effect on Human Health-A Review,” Int J Curr Microbiol Appl Sci, vol. 5, no. 10, pp. 759–766, Oct. 2016, doi: 10.20546/ijcmas.2016.510.082.

[2] A. Odobasic, “Determination and speciation of trace heavy metals in natural water by DPASV,” in Water Quality: Monitoring and Assessment, Voudouris and D. Voutsa, Eds., InTechOpen, 2012, pp. 429–456. Doi: 10.5772/32339

[3] A. Valavanidis and T. Vlachogianni, “Metal pollution in ecosystems: Ecotoxicology studies and risk assessment in the marine environment,” Sci. Adv. Environ. Chem., Toxicol., Ecotoxicol. Issues, 2010. [Online]. Available: www.chem-tox-ecotox.org

[4] S. V. Torti and F. M. Torti, “Iron and Cancer: 2020 Vision,” Cancer Res, vol. 80, no. 24, pp. 5435–5448, Dec. 2020, doi: 10.1158/0008-5472.CAN-20-2017.

[5] A. Singh et al., “Heavy Metal Contamination of Water and Their Toxic Effect on Living Organisms,” in The Toxicity of Environmental Pollutants, IntechOpen, 2022, pp. 1–19. doi: 10.5772/intechopen.105075.

[6] T. Wang, L. Xue, Y. Liu, T. Fang, L. Zhang, and B. Xing, “Insight into the significant contribution of intrinsic defects of carbon-based materials for the efficient removal of tetracycline antibiotics,” Chemical Engineering Journal, vol. 435, May 2022, doi: 10.1016/j.cej.2022.134822.

[7] P. Bhatt, S. Joshi, G. M. Urper Bayram, P. Khati, and H. Simsek, “Developments and application of chitosan-based adsorbents for wastewater treatments,” Environ Res, vol. 226, p. 115530, Jun. 2023, doi: 10.1016/j.envres.2023.115530.

[8] Y. Kong, K. Han, Y. Zhuang, and B. Shi, “Facile Synthesis of MOFs-Templated Carbon Aerogels with Enhanced Tetracycline Adsorption Performance,” Water (Basel), vol. 14, no. 3, p. 504, Feb. 2022, doi: 10.3390/w14030504.

[9] U. Ortiz-Ramos, R. Leyva-Ramos, E. Mendoza-Mendoza, and A. Aragón-Piña, “Removal of tetracycline from aqueous solutions by adsorption on raw Ca-bentonite. Effect of operating conditions and adsorption mechanism,” Chemical Engineering Journal, vol. 432, p. 134428, Mar. 2022, doi: 10.1016/j.cej.2021.134428.

[10] N. Morin-Crini, M. Fourmentin, S. Fourmentin, G. Torri, and G. Crini, “Synthesis of silica materials containing cyclodextrin and their applications in wastewater treatment,” Environ Chem Lett, vol. 17, no. 2, pp. 683–696, Jun. 2019, doi: 10.1007/s10311-018-00818-0.

[11] C. Xia et al., “Adsorption of tetracycline hydrochloride on layered double hydroxide loaded carbon nanotubes and site energy distribution analysis,” Chemical Engineering Journal, vol. 443, p. 136398, Sep. 2022, doi: 10.1016/j.cej.2022.136398.

[12] G. Gopal, S. A. Alex, N. Chandrasekaran, and A. Mukherjee, “A review on tetracycline removal from aqueous systems by advanced treatment techniques,” RSC Adv, vol. 10, no. 45, pp. 27081–27095, 2020, doi: 10.1039/D0RA04264A.

[13] N. G. Kandile, H. T. Zaky, M. I. Mohamed, A. S. Nasr, and Y. G. Ali, “Extraction and Characterization of Chitosan from Shrimp Shells,” Open Journal of Organic Polymer Materials, vol. 08, no. 03, pp. 33–42, 2018, doi: 10.4236/ojopm.2018.83003.

[14] W. L. Ang, A. W. Mohammad, A. Benamor, and N. Hilal, “Chitosan as natural coagulant in hybrid coagulation-nanofiltration membrane process for water treatment,” J Environ Chem Eng, vol. 4, no. 4, pp. 4857–4862, Dec. 2016, doi: 10.1016/j.jece.2016.03.029.

[15] I. O. Saheed, W. Da Oh, and F. B. M. Suah, “Chitosan modifications for adsorption of pollutants – A review,” J Hazard Mater, vol. 408, p. 124889, Apr. 2021, doi: 10.1016/j.jhazmat.2020.124889.

[16] M. Blachnio, T. M. Budnyak, A. Derylo-Marczewska, A. W. Marczewski, and V. A. Tertykh, “Chitosan–Silica Hybrid Composites for Removal of Sulfonated Azo Dyes from Aqueous Solutions,” Langmuir, vol. 34, no. 6, pp. 2258–2273, Feb. 2018, doi: 10.1021/acs.langmuir.7b04076.

[17] S. Joshi and R. K. Srivastava, “Adsorptive removal of lead (Pb), copper (Cu), nickel (Ni) and mercury (Hg) ions from water using chitosan silica gel composite,” Environ Monit Assess, vol. 191, no. 10, p. 615, Oct. 2019, doi: 10.1007/s10661-019-7777-5.

[18] I. F. Nucifera, T. A. Zaharah, and I. Syahbanu, “Uji Stabilitas Kitosan-Kaolin Sebagai Adsorben Logam Berat Cu(Ii) Dalam Air,” Jurnal Kimia Khatulistiwa, vol. 5, no. 2, pp. 43–49, 2016. https://jurnal.untan.ac.id/index.php/jkkmipa/article/view/14896/13112

[19] M. Rajiv Gandhi and S. Meenakshi, “Preparation and characterization of silica gel/chitosan composite for the removal of Cu(II) and Pb(II),” Int J Biol Macromol, vol. 50, no. 3, pp. 650–657, Apr. 2012, doi: 10.1016/j.ijbiomac.2012.01.012.

[20] D. Bokov et al., “Nanomaterial by Sol‐Gel Method: Synthesis and Application,” Advances in Materials Science and Engineering, vol. 2021, no. 1, Jan. 2021, doi: 10.1155/2021/5102014.

[21] M. N., B. N. Nair, and S. S., “Sodium silicate-derived aerogels: effect of processing parameters on their applications,” RSC Adv, vol. 11, no. 25, pp. 15301–15322, 2021, doi: 10.1039/D0RA09793D.

[22] P. M. Shewale, A. V. Rao, and A. P. Rao, “Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels,” Appl Surf Sci, vol. 254, no. 21, pp. 6902–6907, Aug. 2008, doi: 10.1016/j.apsusc.2008.04.109.

[23] I. Onoka and A. Hilonga, “Synthesis and characterization of aminofunctionalized chitosan-silica nanocomposite for the removal of Cu2+ from waste water,” Discov Mater, vol. 5, no. 1, p. 28, Feb. 2025, doi: 10.1007/s43939-025-00215-9.

[24] M. Blachnio, M. Zienkiewicz-Strzalka, A. Derylo-Marczewska, L. V. Nosach, and E. F. Voronin, “Chitosan–Silica Composites for Adsorption Application in the Treatment of Water and Wastewater from Anionic Dyes,” Int J Mol Sci, vol. 24, no. 14, p. 11818, Jul. 2023, doi: 10.3390/ijms241411818.

[25] M. Hudek, K. Johnston, K. Kubiak-Ossowska, V. A. Ferro, and P. A. Mulheran, “Molecular Dynamics Study of Chitosan Adsorption at a Silica Surface,” The Journal of Physical Chemistry C, vol. 128, no. 50, pp. 21531–21538, Dec. 2024, doi: 10.1021/acs.jpcc.4c05821.

[26] T. M. Budnyak et al., “Chitosan Deposited onto Fumed Silica Surface as Sustainable Hybrid Biosorbent for Acid Orange 8 Dye Capture: Effect of Temperature in Adsorption Equilibrium and Kinetics,” The Journal of Physical Chemistry C, vol. 124, no. 28, pp. 15312–15323, Jul. 2020, doi: 10.1021/acs.jpcc.0c04205.

[27] D. Wang et al., “Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration,” J Mater Chem B, vol. 3, no. 38, pp. 7560–7576, 2015, doi: 10.1039/C5TB00767D.

[28] L. S. Connell et al., “Chemical characterisation and fabrication of chitosan–silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane,” J. Mater. Chem. B, vol. 2, no. 6, pp. 668–680, 2014, doi: 10.1039/C3TB21507E.

[29] M. V. Reyes-Peces et al., “Chitosan-GPTMS-Silica Hybrid Mesoporous Aerogels for Bone Tissue Engineering,” Polymers (Basel), vol. 12, no. 11, p. 2723, Nov. 2020, doi: 10.3390/polym12112723.

[30] Y. Amri, R. Fajri, Fitriani, P. Novitasari, and M. Zulfajri, “The Effect of Tripolyphosphate (TPP) Volumes on the Synthesis of Chitosan Nanoparticles Using Ionic Gelation Method,” 2021. doi: 10.2991/assehr.k.210909.048.

[31] G. Jozanikohan and M. N. Abarghooei, “The Fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir,” J Pet Explor Prod Technol, vol. 12, no. 8, pp. 2093–2106, Aug. 2022, doi: 10.1007/s13202-021-01449-y.

[32] M. Olvianas, A. Widiyatmoko, and H. T. B. M. Petrus, “IR spectral similarity studies of geothermal silica-bentonite based geopolymer,” 2017, p. 020015. doi: 10.1063/1.5003498.

[33] H. Liu, H. Kaya, Y. Lin, A. Ogrinc, and S. H. Kim, “Vibrational spectroscopy analysis of silica and silicate glass networks,” Journal of the American Ceramic Society, vol. 105, no. 4, pp. 2355–2384, Apr. 2022, doi: 10.1111/jace.18206.

[34] A. Tshikovhi, S. B. Mishra, A. K. Mishra, and T. E. Motaung, “Effect of Silica Content in a Bio-Polymeric Blended Nanocomposite for Efficient Adsorption of Mercury in Basic Aqueous Solution,” Fibers and Polymers, vol. 26, no. 2, pp. 521–535, Feb. 2025, doi: 10.1007/s12221-025-00854-y.

[35] A. Pérez-Moreno et al., “Chitosan-Silica Hybrid Biomaterials for Bone Tissue Engineering: A Comparative Study of Xerogels and Aerogels,” Gels, vol. 9, no. 5, p. 383, May 2023, doi: 10.3390/gels9050383.

[36] N. Niu, S.-H. Teng, H.-J. Zhou, and H.-S. Qian, “Synthesis, Characterization, and In Vitro Drug Delivery of Chitosan-Silica Hybrid Microspheres for Bone Tissue Engineering,” J Nanomater, vol. 2019, pp. 1–7, Aug. 2019, doi: 10.1155/2019/7425787.

[37] P. Grzybek, Ł. Jakubski, and G. Dudek, “Neat Chitosan Porous Materials: A Review of Preparation, Structure Characterization and Application,” Int J Mol Sci, vol. 23, no. 17, p. 9932, Sep. 2022, doi: 10.3390/ijms23179932.

[38] L. Ren, J. Xu, Y. Zhang, J. Zhou, D. Chen, and Z. Chang, “Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium,” Int J Biol Macromol, vol. 135, pp. 898–906, Aug. 2019, doi: 10.1016/j.ijbiomac.2019.06.007.

[39] M. Chen, H. Zhao, H. Fang, and Y. Zhang, “Cross-Sectional Information on Pore Structure and Element Distribution of Sediment Particles by SEM and EDS,” Scanning, vol. 2017, pp. 1–7, 2017, doi: 10.1155/2017/9876935.

[40] Y. Niu, W. Yu, S. Yang, and Q. Wan, “Understanding the relationship between pore size, surface charge density, and Cu2+ adsorption in mesoporous silica,” Sci Rep, vol. 14, no. 1, p. 13521, Jun. 2024, doi: 10.1038/s41598-024-64337-5.

[41] T. Zhong, M. Xia, Z. Yao, and C. Han, “Chitosan/Silica Nanocomposite Preparation from Shrimp Shell and Its Adsorption Performance for Methylene Blue,” Sustainability, vol. 15, no. 1, p. 47, Dec. 2022, doi: 10.3390/su15010047.

[42] N. S. L. Silalahi, Y. Amri, and P. Wahyuningsih, “Analisis Kuantitatif Logam Berat dalam Tiram (Crassostrea Sp.) dari Pesisir Kuala Langsa,” Jurnal Jeumpa, vol. 9, no. 2, pp. 784–794, Nov. 2022, doi: 10.33059/jj.v9i2.6475.

[43] J. R. de Mello et al., “Synthesis, characterization and application of new adsorbent composites based on sol-gel/chitosan for the removal of soluble substance in water,” Heliyon, vol. 8, no. 5, p. e09444, May 2022, doi: 10.1016/j.heliyon.2022.e09444.

[44] M.-X. Huo, Y.-L. Jin, Z.-F. Sun, F. Ren, L. Pei, and P.-G. Ren, “Facile synthesis of chitosan-based acid-resistant composite films for efficient selective adsorption properties towards anionic dyes,” Carbohydr Polym, vol. 254, p. 117473, Feb. 2021, doi: 10.1016/j.carbpol.2020.117473.

[45] L. Zhang, Y. Zeng, and Z. Cheng, “Removal of heavy metal ions using chitosan and modified chitosan: A review,” J Mol Liq, vol. 214, pp. 175–191, Feb. 2016, doi: 10.1016/j.molliq.2015.12.013.

[46] Y. Amri, R. Fajri, and M. S. Batu, “CHITOSAN ISOLATION AND ITS APPLICATION TO REDUCE THE CONTENT OF METAL IONS IN WELLBORE WATER,” Jurnal Neutrino, vol. 12, no. 1, p. 30, Jan. 2020, doi: 10.18860/neu.v12i1.8186.

[47] J. O. Gonçalves, M. M. Strieder, L. F. O. Silva, G. S. dos Reis, and G. L. Dotto, “Advanced technologies in water treatment: Chitosan and its modifications as effective agents in the adsorption of contaminants,” Int J Biol Macromol, vol. 270, p. 132307, Jun. 2024, doi: 10.1016/j.ijbiomac.2024.132307.

[48] Y. Dago-Serry, K. N. Maroulas, A. K. Tolkou, N. C. Kokkinos, and G. Z. Kyzas, “How the chitosan structure can affect the adsorption of pharmaceuticals from wastewaters: An overview,” Carbohydrate Polymer Technologies and Applications, vol. 7, p. 100466, Jun. 2024, doi: 10.1016/j.carpta.2024.100466.

[49] F. da Silva Bruckmann, J. O. Gonçalves, L. F. O. Silva, M. L. S. Oliveira, G. L. Dotto, and C. R. B. Rhoden, “Chitosan-based adsorbents for wastewater treatment: A comprehensive review,” Int J Biol Macromol, vol. 309, p. 143173, May 2025, doi: 10.1016/j.ijbiomac.2025.143173.

[50] N. P. Simelane, J. K. O. Asante, P. P. Ndibewu, A. S. Mramba, and L. L. Sibali, “Biopolymer composites for removal of toxic organic compounds in pharmaceutical effluents – a review,” Carbohydrate Polymer Technologies and Applications, vol. 4, p. 100239, Dec. 2022, doi: 10.1016/j.carpta.2022.100239.

[51] M. R. Abukhadra, M. H. Eid, M. A. El-Meligy, M. Sharaf, and A. T. Soliman, “Insight into chitosan/mesoporous silica nanocomposites as eco-friendly adsorbent for enhanced retention of U (VI) and Sr (II) from aqueous solutions and real water,” Int J Biol Macromol, vol. 173, pp. 435–444, Mar. 2021, doi: 10.1016/j.ijbiomac.2021.01.136.

[52] J. P. Vareda, P. M. C. Matias, J. A. Paixão, D. Murtinho, A. J. M. Valente, and L. Durães, “Chitosan–Silica Composite Aerogel for the Adsorption of Cupric Ions,” Gels, vol. 10, no. 3, p. 192, Mar. 2024, doi: 10.3390/gels10030192.

[53] H. Alkhaldi et al., “Sustainable polymeric adsorbents for adsorption-based water remediation and pathogen deactivation: a review,” RSC Adv, vol. 14, no. 45, pp. 33143–33190, 2024, doi: 10.1039/D4RA05269B.

[54] J. Liu et al., “A biomimetic SiO2@chitosan composite as highly-efficient adsorbent for removing heavy metal ions in drinking water,” Chemosphere, vol. 214, pp. 738–742, Jan. 2019, doi: 10.1016/j.chemosphere.2018.09.172.

[55] N. S. Tadayoni, M. Dinari, A. Roy, and M. Karimi Abdolmaleki, “Recent Advances in Porous Bio-Polymer Composites for the Remediation of Organic Pollutants,” Polymers (Basel), vol. 16, no. 11, p. 1543, May 2024, doi: 10.3390/polym16111543

Refbacks

  • There are currently no refbacks.