Eco-Friendly Revolution in Fingerprint Detection: Synthesis of Zno Nanoparticles Using Durian (Durio Zibethinus) Peel Extract Pakpak Bharat

Sri Adelila Sari, Rani Febriana, Feri Yuni Asiyah Kabeakan

Abstract

Fingerprints are a reliable means of forensic identification because ridge patterns are unique and permanent. Conventional fingerprint powders, however, may contain hazardous ingredients that pose health and environmental risks. This study synthesized zinc oxide (ZnO) nanoparticles via a green route using durian peel (Durio zibethinus) extract and evaluated their potential as an eco-friendly latent fingerprint developer. ZnO nanoparticles were characterized by FTIR to identify functional groups, SEM to examine morphology and particle size, and EDX to verify elemental composition. The biosynthesized ZnO showed semi-spherical to granular particles with sizes of 40–90 nm and no severe agglomeration. FTIR indicated hydroxyl and carbonyl groups from durian peel biomolecules, suggesting their role as reducing and stabilizing agents. EDX confirmed dominant Zn (72.5%) and O (15.2%) signals, supporting high purity ZnO formation. Latent fingerprint development was tested using prints from 40 respondents on porous surfaces (black cardboard and oil paper) and nonporous surfaces (microscope slide, aluminum foil, and compact disc). The ZnO nanopowder produced clear ridge patterns and higher contrast on nonporous substrates, while conventional powders tended to leave residues and may require less safe reagents. These results indicate that durian peel derived ZnO nanoparticles are a promising, economical, and environmentally friendly alternative for latent fingerprint visualization and provide added value for agricultural waste utilization in forensic applications.

Keywords

Latent fingerprint; ZnO; green biosynthesis; durian peel; forensic application

Full Text:

PDF

References

[1] K. M. Batti, “Penggunaan sidik jari sebagai alat bukti untuk mengungkap tindak pidana pencurian dengan kekerasan,” Lex et Societatis, vol. 5, no. 6, pp. 21–28, 2017. [Online]. Available: https://ejournal.unsrat.ac.id/v2/index.php/lexetsocietatis/article/view/17903/17430. Accessed: Nov. 6, 2025.

[2] J. Li, J. Feng, and C.-C. J. Kuo, “Deep convolutional neural network for latent fingerprint enhancement,” Signal Processing: Image Communication, vol. 60, pp. 52–63, 2018, doi:10.1016/j.image.2017.08.010.

[3] C. Elishian and R. Ketrin, “Karakterisasi dan aplikasi senyawa kimia terapan pada industri lokal,” Jurnal Kimia Terapan Indonesia, vol. 5, no. 1, pp. 15–24, 2011. [Online]. Available: https://www.neliti.com. Accessed: Nov. 6, 2025.

[4] S. A. Sari, M. R. Ar, H. Hasibuan, N. Harlianda, and S. Elvi, “Biosintesis nanopartikel ZnO menggunakan ekstrak daun betadin (Jatropha multifida L.) untuk identifikasi sidik jari laten,” Prosiding Seminar Nasional Kimia, pp. 1–9, 2023. [Online]. Available: https://perpustakaan.poltekkes-malang.ac.id. Accessed: Nov. 6, 2025.

[5] B. S. Fakiha, “Synthesis and characterization of zinc oxide nanoparticles for forensic applications,” Int. J. Adv. Sci. Technol., vol. 29, no. 5, pp. 105–114, 2020. [Online]. Available: https://www.researchgate.net/publication/344357130_How_Technology_has_Improved_Forensic_Fingerprint_Identification_to_Solve_Crimes

[6] F. B. Winata, “Analisis regulasi hukum terkait bukti sidik jari di Indonesia,” Transformasi Hukum, vol. 12, no. 2, pp. 45–53, 2022. [Online]. Available: https://ojs.unsiq.ac.id/index.php/transformasihukum/article/view/2792/1673

[7] S. A. Sari, H. Ningsih, Jasmidi, A. Kembaren, and N. A. Mahat, “Development of gambir powder as a cheap and green fingerprint powder for forensic applications,” AIP Conf. Proc., vol. 2155, p. 020023, 2019, doi:10.1063/1.5125527.

[8] S. A. Sari, H. Ningsih, Jasmidi, A. Kembaren, and N. A. Mahat, “Eco-friendly fingerprint powder from natural extracts,” in Eighth Natl. Symp. and Fourth Int. Symp., Bangkokthonburi Univ., 26 Apr. 2020, pp. 329–343. [Online]. Available: https://repository.unimed.ac.id. Accessed: Nov. 6, 2025.

[9] S. A. Sari and N. S. Lubis, “The development of dusting method for dragon fruit peel as fingerprint visualization,” JKPK (Jurnal Kimia dan Pendidikan Kimia), vol. 6, no. 1, pp. 1–13, 2021, doi:10.20961/jkpk.v6i1.46315.

[10] S. A. Sari and D. H. Nasution, “Development of nail henna (Lawsonia inermis Linn.) leaf powder as a latent fingerprint visualization on non-porous and porous surfaces,” Journal of Medicinal and Chemical Sciences, vol. 6, no. 3, pp. 540–552, 2023, doi:10.26655/JMCHEMSCI.2023.3.11

[11] S. A. Sari and D. Hawari, “Biosynthesis of ZnO nanoparticles using lime leaf extract (Citrus aurantifolia) for identification of latent fingerprints,” JKPK (Jurnal Kimia dan Pendidikan Kimia), vol. 7, no. 2, pp. 171–180, 2022, doi:10.20961/jkpk.v7i2.62090.

[12] F. Amir and C. Saleh, “Karakterisasi nanopartikel ZnO dari ekstrak tumbuhan lokal,” J. Kim. Mulawarman, vol. 10, no. 2, pp. 34–42, 2014. [Online]. Available: http://jurnal.kimia.fmipa.unmul.ac.id. Accessed: Nov. 6, 2025.

[13] N. Muawanah, “Biosintesis nanopartikel ZnO dari daun tanaman lokal,” Pros. Sem. Nas. Sains dan Teknol., pp. 15–22, 2019. [Online]. Available: https://repository.universitysite.ac.id. Accessed: Nov. 6, 2025.

[14] M. Naseer, U. Aslam, B. Khalid, and B. Chen, “Green route to synthesize zinc oxide nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential,” Scientific Reports, vol. 10, no. 1, p. 9055, 2020, doi:10.1038/s41598-020-65949-3.

[15] K. M. Ezealisiji, O. O. Ogunlana, A. O. Adebayo, and O. O. Ogunlana, “Green synthesis of zinc oxide nanoparticles using Solanum torvum (L) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats,” Int. Nano Lett., vol. 9, pp. 99–107, 2019, doi:10.1007/s40089-018-0263-1.

[16] T. U. D. Thi, T. T. T. Nguyen, T. T. Nguyen, T. T. Nguyen, and T. T. Nguyen, “Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities,” RSC Advances, vol. 10, no. 40, pp. 23899–23907, 2020, doi:10.1039/D0RA04926C.

[17] S. Rades, A. S. S. Dorfschmidt, M. B. R. Oliveira, and M. A. Z. Arruda, “High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles,” RSC Advances, vol. 4, no. 91, pp. 49577–49587, 2014, doi:10.1039/C4RA05092D.

[18] B. Banerjee and G. Kaur, “Biosynthesis of bioactive zinc oxide nanoparticles,” in Handbook of Greener Synthesis of Nanomaterials and Compounds, M. A. Hashim, Ed. Elsevier, 2021, pp. 631–662, doi:10.1016/B978-0-12-821938-6.00019-0.

[19] A. Biswas, S. K. Das, S. K. Das, and S. K. Das, “Biosynthesis of triangular-shape ZnO nanoparticles using Tecoma stans and its antimicrobial activity,” Inorganic and Nano-Metal Chemistry, vol. 54, no. 1, pp. 67–77, 2024, doi:10.1080/24701556.2021.1999271.

[20] S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram, “A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise,” Journal of Advanced Research, vol. 7, no. 1, pp. 17–28, 2016, doi:10.1016/j.jare.2015.02.007.

[21] F. S. Arifin and Nazriati, “Biosintesis dan karakterisasi nanopartikel seng oksida (ZnO-NPs) menggunakan ekstrak daun kenitu (Chrysophyllum cainito L.),” J. Tek. Kim. USU, vol. 11, no. 2, pp. 56–63, 2022, doi:10.32734/jtk.v11i2.9127.

[22] R. S. Dangana, A. A. Adebayo, O. O. Ogunlana, and O. O. Ogunlana, “Facile biosynthesis, characterisation and biotechnological application of ZnO nanoparticles mediated by leaves of Cnidoscolus aconitifolius,” Artif. Cells Nanomed. Biotechnol., vol. 51, no. 1, pp. 309–317, 2023, doi:10.1080/21691401.2023.2221698.

[23] L. Suhaimi, N. A. M. Asri, N. A. M. Asri, and N. A. M. Asri, “Biosynthesis and characterization of micro structured zinc oxide (ZnO) thin films using fingerroot (Boesenbergia rotunda) extract by dip coating technique,” AIP Conf. Proc., vol. 3026, p. 080003, 2024, doi:10.1063/5.0199756.

[24] R. K. Verma, V. Nagar, V. Aseri, B. Mavry, P. P. Pandit, R. L. Chopade, A. Singh, A. Singh, V. K. Yadav, K. Pandey, and M. S. Sankhla, “Zinc oxide (ZnO) nanoparticles: Synthesis, properties, and their forensic applications in latent fingerprints development,” Materials Today: Proceedings, vol. 69, pt. 1, pp. 36–41, 2022, doi: 10.1016/j.matpr.2022.08.074.

[25] B. Flores, M. Guzman, R. Grieseler, et al., “Synthesis of zinc oxide nanoparticles and their potential application in the detection of latent fingerprints,” J. Clust. Sci., vol. 36, p. 70, 2025, doi: 10.1007/s10876-025-02770-w.

[26] A. M. Salih, A. M. Salih, A. M. Salih, and A. M. Salih, “Biosynthesis of zinc oxide nanoparticles using Phoenix dactylifera and their effect on biomass and phytochemical compounds in Juniperus procera,” Sci. Rep., vol. 11, no. 1, p. 19136, 2021, doi:10.1038/s41598-021-98607-3.

[27] E. Makauki, E. Makauki, E. Makauki, and E. Makauki, “Facile biosynthesis of Ag–ZnO nanocomposites using Launaea cornuta leaf extract and their antimicrobial activity,” Discov. Nano, vol. 18, no. 1, p. 142, 2023, doi:10.1186/s11671-023-03925-2.

[28] A. Rosa, K. N. Wahyusi, and R. R. Yogaswara, “Biosintesis nanopartikel ZnO menggunakan ekstrak daun tanaman jagung (Zea mays L.),” Jurnal Fisika Unand, vol. 14, no. 2, pp. 160–166, 2025. [Online]. https://doi.org/10.25077/jfu.14.2.160-166.2025

[29] R. Vadivel, M. Nirmala, and K. Anbukumaran, “Commonly available, everyday materials as non-conventional powders for the visualization of latent fingerprints,” Forensic Chemistry, vol. 24, p. 100339, 2021, doi:10.1016/j.forc.2021.100339.

[30] P. K. Bose and M. J. Kabir, “Fingerprint: a unique and reliable method for identification,” J. Enam Med. Coll., vol. 7, no. 1, pp. 29–34, 2017, doi:10.3329/jemc.v7i1.30748.

Refbacks

  • There are currently no refbacks.