Biosynthesis and Characterization of SiO-Cochineal Dye Nanoparticles Based on Salak Frond Silica for Fingerprint Visualization Applications
Abstract
Keywords
References
[1] I.K., A. M., S. J. Monica, and S. C., “Antioxidant and antimicrobial activities of silver and iron nanoparticles synthesized from jackfruit peel (Artocarpus heterophyllus): A sustainable waste valorization approach,” Environment and Ecology, vol. 43, no. 2, pp. 375–384, Apr. 2025, doi: https://doi.org/10.60151/envec/trpp7406
[2] S. Javed, A. Ali, S. Alam, M. Rafique, B. Gul, H. J. Chaudhary, and E. Y. Santali, “Biosorption of cadmium and chromium from wastewater using Bacillus xiamenensis and Bacillus cereus isolated from the sugarcane rhizosphere,” ACS ES&T Water, vol. 4, no. 9, pp. 4140–4149, 2024, doi: https://doi.org/10.1021/acsestwater 4c00406.
[3] A. Samy, A. M. Ismail, and H. Ali, “Environmentally friendly mesoporous SiO2 with mixed fiber/particle morphology and large surface area for enhanced dye adsorption,” J. Mater. Sci., vol. 58, no. 4, pp. 1586–1607, Jan. 2023, doi: https://doi.org/10.1007/s10853-022-08119-2.
[4] Q. Ain Leghari et al., “Eco-friendly synthesis of silver nanoparticles from pomegranate peel extract and their antibacterial activity,” Kashf Journal of Multidisciplinary Research, no. 1, pp. 2–4, 2025. [Online]. Available: https://kjmr.com.pk
[5] V. Singh et al., “Heavy metal contamination in the aquatic ecosystem: Toxicity and its remediation using eco-friendly approaches,” Toxics, Feb. 2023, doi: https://doi.org/10.3390/toxics11020147.
[6] P. S. Penteado et al., “Green extraction and NMR analysis of bioactives from orange juice waste,” Foods, vol. 14, no. 4, Feb. 2025, doi: https://doi.org/10.3390/foods14040642.
[7] I.Degli Esposti, L. Guerrisi, G. Peruzzi, S. Giulietti, and D. Pontiggia, “Cell wall bricks of defence: The case study of oligogalacturonides,” Front. Plant Sci., 2025, doi: https://doi.org/10.3389/fpls.2025.1552926.
[8] I.Vicente-Zurdo, E. Gómez-Mejía, S. Morante-Zarcero, N. Rosales-Conrado, and I. Sierra, “Analytical strategies for green extraction, characterization, and bioactive evaluation of polyphenols, tocopherols, carotenoids, and fatty acids in agri-food bio-residues,” Molecules, Mar. 2025, doi: https://doi.org/10.3390/molecules30061326.
[9] J. Sandhya and M. Neelamegam, “Biosynthesis of nanoparticles from bio waste and its application on anti-corrosion, antifungal and paint applications,” Int. J. Sci. Res. Eng. Manag., vol. 9, no. 4, 2025, doi: https://doi.org/10.55041/ijsrem44611.
[10] I.J. Horst, C. A. Duvosin, and R. D. A. Vieira, “Synthesis of 2D heterostructures: MoS2/GO and MoS2/graphene via microdrop and CVD deposition,” Int. J. Nanosci., vol. 20, no. 6, pp. 1–8, 2021. doi: https://doi.org/10.1142/S0219581X21500502.
[11] W. Yeddes et al., “Optimization of phenolic compound extraction from Tunisian squash by-products: A sustainable approach for antioxidant and antibacterial applications,” Open Life Sci., vol. 20, no. 1, Jan. 2025, doi: https://doi.org/10.1515/biol-2025-1096.
[12] T. S. Echegaray-Ugarte et al., “Green synthesis of silver nanoparticles mediated by Punica granatum peel waste: An effective additive for natural rubber latex nanofibers enhancement,” Polymers (Basel), vol. 16, no. 11, Jun. 2024, doi: https://doi.org/10.3390/polym16111531.
[13] S. A. Sari and D. H. Nasution, “Development of nail henna (Lawsonia inermis Linn.) leaf powder as a latent fingerprint visualization on non-porous and porous surfaces,” J. Med. Chem. Sci., vol. 6, no. 3, pp. 540–552, Mar. 2023, doi: https://doi.org/10.26655/jmchemsci.2023.3.11.
[14] S. A. Sari and D. H. Nasution, “Pengembangan metode serbuk daun suji (Pleomele angustifolia N.E.Br) sebagai identifikasi sidik jari laten,” Jurnal Riset Kimia, vol. 12, no. 2, Sep. 2021, doi: https://doi.org/10.25077/jrk.v12i2.406.
[15] B. Do and H. Kwon, “Genotoxicity test of eight natural color additives in the Korean market,” Genes Environ., vol. 44, no. 1, Dec. 2022, doi: https://doi.org/10.1186/s41021-022-00247-0.
[16] R. Reyes-Pérez et al., “Cochineal (Dactylopius coccus Costa) pigment extraction assisted by ultrasound and microwave techniques,” Molecules, vol. 29, no. 23, Dec. 2024, doi: https://doi.org/10.3390/molecules29235568.
[17] R. Karadag, “Cotton dyeing with cochineal by just in time extraction, mordanting, dyeing, and fixing method in the textile industry,” J. Nat. Fibers, vol. 20, no. 1, pp. 1–11, 2023, doi: https://doi.org/10.1080/15440478.2022.2108184.
[18] H. P. Melo, A. J. Cruz, J. Sanyova, S. Valadas, and A. M. Cardoso, “Paint, colour, and style: The contribution of minerals to the palette of The Descent from the Cross, attributed to the Portuguese painter Francisco João (act. 1558–1595),” Minerals, vol. 13, no. 9, Sep. 2023, doi: https://doi.org/10.3390/min13091182.
[19] A.Pasdaran, M. Zare, A. Hamedi, and A. Hamedi, “A review of the chemistry and biological activities of natural colorants, dyes, and pigments: Challenges, and opportunities for food, cosmetics, and pharmaceutical application,” Chem. Biodivers., vol. 20, no. 8, 2023, doi: https://doi.org/10.1002/cbdv.202300561
[20] I.Celis, C. Segura, J. S. Gómez-Jeria, M. Campos-Vallette, and S. Sanchez-Cortes, “Analysis of biomolecules in cochineal dyed archaeological textiles by surface-enhanced Raman spectroscopy,” Sci. Rep., vol. 11, no. 1, Dec. 2021, doi: https://doi.org/10.1038/s41598-021-86074-9.
[21] K. Sutor-Świeży et al., “Basella alba L. (Malabar spinach) as an abundant source of betacyanins: Identification, stability, and bioactivity studies on natural and processed fruit pigments,” J. Agric. Food Chem., vol. 72, no. 6, pp. 2943–2962, Feb. 2024, doi: https://doi.org/10.1021/acs.jafc.3c06225.
[22] S. Sankararaman, “Phase portrait and fractal analyses in nanobiophotonics: Carbon nanoparticle aided intra-pigment energy transfer in leaves,” Phys. Scr., vol. 97, no. 6, 2022.
[23] R. Kiruthiga and G. Thiruneelakandan, “Isolation and identification of pigments from marine actinomycetes, along with their potential applications,” J. Adv. Zool., vol. 44, no. 4, pp. 869–876, Nov. 2023, doi: https://doi.org/10.17762/jaz.v44i4.2209.
[24] S. Yuan, Y. Hou, S. Liu, and Y. Ma, “A comparative study on rice husk, as agricultural waste, in the production of silica nanoparticles via different methods,” Materials, vol. 17, no. 6, Mar. 2024, doi: https://doi.org/10.3390/ma17061271.
[25] I.Wei, S. H. Urashima, S. Nihonyanagi, and T. Tahara, “Elucidation of the pH-dependent electric double layer structure at the silica/water interface using heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc., vol. 145, no. 16, pp. 8833–8846, Apr. 2023, doi: https://doi.org/10.1021/jacs.2c11344.
[26] A.G. Setyadi and S. H. Widiyarti, “Analisis tekanan darah karyawan sebelum dan sesudah melakukan pekerjaan di ketinggian pada PT. Chandra Asri Petrochemical Site Office Serang,” Jurnal Ners Universitas Pahlawan, vol. 7, no. 2, pp. 9630–968, 2023. doi: https://doi.org/10.31004/jn.v7i2.16022.
[27] Irzaman, D. Yustaeni, Aminullah, Irmansyah, and B. Yuliarto, “Purity, morphological, and electrical characterization of silicon dioxide from cogon grass (Imperata cylindrica) using different ashing temperatures,” Egypt. J. Chem., vol. 64, no. 8, pp. 4143–4149, Aug. 2021, doi: https://doi.org/10.21608/ejchem.2019.15430.1962.
[28] P. Nurjanto, K. Khamidinal, I. Fajriyati, and D. Krisdiyanto, “Sintesis silika gel dari pelepah pohon salak pondoh dengan metode sol–gel menggunakan NaOH dan HCl,” Indonesian Journal of Materials Chemistry, vol. 3, no. 2, 2020, doi: https://doi.org/10.14421/ijmc.v3i2.3913.
[29] D. Shandurkov, N. Danchova, T. Spassov, V. Petrov, R. Tsekov, and S. Gutzov, “Silica gels doped with gold nanoparticles: Preparation, structure and optical properties,” Gels, vol. 9, no. 8, Aug. 2023, doi: https://doi.org/10.3390/gels9080663.
[30] U. G. Longo et al., “Biosensors for detection of biochemical markers relevant to osteoarthritis,” Biosensors, Feb. 2021, doi: https://doi.org/10.3390/bios11020031.
[31] L. Hellweg et al., “A general method for the development of multicolor biosensors with large dynamic ranges,” Nat. Chem. Biol., vol. 19, no. 9, pp. 1147–1157, Sep. 2023, doi: https://doi.org/10.1038/s41589-023-01350-1.
[32] D. V. Vokhmyanina, O. E. Sharapova, K. E. Buryanovataya, and A. A. Karyakin, “Novel siloxane derivatives as membrane precursors for lactate oxidase immobilization,” Sensors, vol. 23, no. 8, Apr. 2023, doi: https://doi.org/10.3390/s23084014.
[33] X. Lin, “Application of biosensors in the detection of plant biomolecules,” Theor. Nat. Sci., vol. 23, no. 1, pp. 237–242, Dec. 2023, doi: https://doi.org/10.54254/2753-8818/23/20231072.
[34] S. Palakurthy, L. Houben, M. Elbaum, and R. Elbaum, “Silica biomineralization with lignin involves Si–O–C bonds that stabilize radicals,” Biomacromolecules, vol. 25, no. 6, pp. 3409–3419, Jun. 2024, doi: https://doi.org/10.1021/acs.biomac.4c00061.
[35] K. Maghrebi, S. Gam, B. Hammami, A. Alsadiri, M. Abderrabba, and S. Messaoudi, “Exploration of the mechanism of the dimerization of hydroxymethylsilanetriol using electronic structure methods,” ACS Omega, vol. 7, no. 3, pp. 2661–2670, Jan. 2022, doi: https://doi.org/10.1021/acsomega.1c05027.
[36] P. Wu et al., “Supporting information: How the Si–O–Si covalent bond interface affects the electrochemical performance of Si anode,” ACS Appl. Mater. Interfaces, 2023. doi: https://doi.org/10.1021/acsaem.2c00747
[37] Z. L. Kong, Y. Liu, and J. H. Jiang, “Topologically integrated photonic biosensor circuits,” Laser Photonics Rev., vol. 19, no. 8, p. 2401209, 2025, doi: https://doi.org/10.1002/lpor.202401209.
[38] I.J. Leonel, S. Bin Mujib, G. Singh, and A. Navrotsky, “Thermodynamic stabilization of crystalline silicon carbide polymer-derived ceramic fibers,” Int. J. Ceram. Eng. Sci., vol. 4, no. 5, pp. 315–326, Sep. 2022, doi: https://doi.org/10.1002/ces2.10153.
[39] J. Jamoul, S. Smet, S. Radhakrishnan, C. V. Chandran, J. A. Martens, and E. Breynaert, “Polysilicate porous organic polymers (PSiPOPs), a family of porous, ordered 3D reticular materials with polysilicate nodes and organic linkers,” Chem. Mater., vol. 36, no. 3, pp. 1385–1394, 2024, doi: https://doi.org/10.1021/acs.chemmater.3c02546.
[40] I.Zhu, X. Fang, X. Liu, D. Luo, W. Yu, and H. Zhang, “High-rate SiO lithium-ion battery anode enabled by rationally interfacial hybrid encapsulation engineering,” ACS Appl. Mater. Interfaces, vol. 16, no. 5, pp. 5915–5925, 2024, doi: https://doi.org/10.1021/acsami.3c17064
[41] S. A. Sari and A. N. Sari Lubis, “The development of dusting method for dragon fruit peel as fingerprint visualization,” JKPK (J. Kim. Pendidik. Kim.), vol. 6, no. 1, p. 1, Apr. 2021, doi: https://doi.org/10.20961/jkpk.v6i1.46315.
[42] S. A. Sari, H. Hasibuan, R. M. Siahaan, and N. H. S. Mais, “Biosynthesis and characterization of ZnO nanoparticles with papaya leaf extract (Carica papaya L.) as latent fingerprint identification,” in Proc. Semin. Nas. Kimia, Surabaya, Sep. 2023, pp. 81–88.
[43] F. Hameed, A. K. Mohammed, and D. S. Zageer, “Comparative study between activated carbon and charcoal for the development of latent fingerprints on nonporous surfaces,” Al-Khwarizmi Eng. J., vol. 18, no. 4, pp. 1–13, Dec. 2022, doi: https://doi.org/10.22153/kej.2022.09.001.
[44] H. J. A. Yadav, B. Eraiah, M. N. Kalasad, and M. D. Hadagali, “Nanomaterials for forensic applications: A review,” Int. J. Mater. Manuf. Sustain. Technol., pp. 4–11, Sep. 2022, doi: https://doi.org/10.56896/ijmmst.2022.1.1.002.
[45] P. Boonyaras, S. Boonpang, and K. Dangudom, “Latent fingerprint detection using fluorescent powder dusting technique,” in J. Phys. Conf. Ser., 2023, doi: https://doi.org/10.1088/1742-6596/2653/1/012075.
[46] Y. Gülekçi and A. Tülek, “Optimization of crystal violet technique for enhanced fingerprint detection on various surfaces,” J. Forensic Sci., vol. 69, no. 4, pp. 1246–1255, Jul. 2024, doi: https://doi.org/10.1111/1556-4029.15534.
[47] S. A. A. Sarifudin, K. H. Chang, C. H. Yew, V. Kunalan, B. E. Khoo, and A. F. L. Abdullah, “Recovery and visualisation of methamphetamine-contaminated fingermarks from non-porous surfaces,” Malaysian J. Med. Health Sci., vol. 19, no. 6, pp. 178–185, Nov. 2023, doi: https://doi.org/10.47836/mjmhs.19.6.24.
[48] J. Parkale and M. S. Bagul, “A review of latent fingerprint developed powder from using natural materials,” Int. J. Sci. Res. Sci. Technol., vol. 11, no. 2, pp. 715–717, Apr. 2024, doi: https://doi.org/10.32628/ijsrst24112115.
[49] T. Kobayashi and M. Pruski, “Indirectly detected DNP-enhanced 17O NMR spectroscopy: Observation of non-protonated near-surface oxygen at naturally abundant silica and silica-alumina,” ChemPhysChem, vol. 22, no. 14, pp. 1441–1445, Jul. 2021, doi: https://doi.org/10.1002/cphc.202100290
[50] A.M. Jewell et al., “Three North African dust source areas and their geochemical fingerprint,” Earth Planet. Sci. Lett., vol. 554, p. 116645, 2021, doi: 10.1016/j.epsl.2020.116645. doi: https://doi.org/10.1016/j.epsl.2020.116645.
[51] V. Wonoputri, T. W. Samadhi, S. Khairunnisa, and E. Rahayu, “Role of deagglomeration in particle size and antibiofilm activity of ZnO nanoparticles synthesized with Averrhoa bilimbi extract,” J. Eng. Technol. Sci., vol. 56, no. 6, pp. 727–741, 2024, doi: https://doi.org/10.5614/j.eng.technol.sci.2024.56.6.5.
[52] N. E. A. El-Naggar, S. R. Dalal, A. M. Zweil, and M. Eltarahony, “Artificial intelligence-based optimization for chitosan nanoparticles biosynthesis, characterization and in vitro assessment of its anti-biofilm potentiality,” Sci. Rep., vol. 13, no. 1, Dec. 2023, doi: https://doi.org/10.1038/s41598-023-30911-6
[53] .Flieger, W. Flieger, J. Baj, and R. Maciejewski, “Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles,” Materials, Aug. 2021, doi: https://doi.org/10.3390/ma14154135.
[54] R. L. White, “A temperature perturbation infrared spectroscopy comparison of HY and NaY zeolite dehydration/rehydration,” Minerals, vol. 14, no. 1, Jan. 2024, doi: https://doi.org/10.3390/min14010104.
[55] Z. Ma, H. Liao, Z. Pan, and F. Cheng, “Insights into coproduction of silica gel via desulfurization of steel slag and silica gel adsorption performance,” ACS Omega, vol. 7, no. 24, pp. 21062–21074, Jun. 2022, doi: https://doi.org/10.1021/acsomega.2c01857.
[56] J. H. Jacobs, K. H. McKelvie, S. Nanji, and R. A. Marriott, “Sour gas adsorption on silica gels,” ACS Omega, vol. 8, no. 13, pp. 12592–12602, Apr. 2023, doi: https://doi.org/10.1021/acsomega.3c01366.
[57] S. A. Yamada, S. T. Hung, J. Yoon Shin, and M. D. Fayer, “Complex formation and dissociation dynamics on amorphous silica surfaces,” J. Phys. Chem. Lett., 2023.
[58] Y. Ikemoto et al., “Infrared spectra and hydrogen-bond configurations of water molecules at the interface of water-insoluble polymers under humidified conditions,” J. Phys. Chem. B, vol. 126, no. 22, pp. 4143–4151, Jun. 2022, doi: https://doi.org/10.1021/acs.jpcb.2c01702.
[59] Y. Xia, C. Calahoo, B. P. Rodrigues, K. Griebenow, L. Graewe, and L. Wondraczek, “Structure and properties of cerium phosphate and silicophosphate glasses,” J. Am. Ceram. Soc., vol. 106, no. 5, pp. 2808–2819, May 2023, doi: https://doi.org/10.1111/jace.18936.
[60] R. G. Schireman, J. Maul, A. Erba, and M. T. Ruggiero, “Anharmonic coupling of stretching vibrations in ice: A periodic VSCF and VCI description,” J. Chem. Theory Comput., vol. 18, no. 7, pp. 4428–4437, 2022, doi: https://doi.org/10.1021/acs.jctc.2c00217
[61] I.Shi and W. Min, “Vibrational solvatochromism study of the C–H···O improper hydrogen bond,” J. Phys. Chem. B, vol. 127, no. 17, pp. 3798–3805, 2023, doi: https://doi.org/10.1021/acs.jpcb.2c08119.
[62] S. N. Matussin et al., “α-Glucosidase inhibitory activity and cytotoxicity of CeO2 nanoparticles fabricated using a mixture of different cerium precursors,” ACS Omega, vol. 9, no. 1, pp. 157–165, Jan. 2024, doi: https://doi.org/10.1021/acsomega.3c02524.
[63] B. Xu et al., “Clinical characteristics and early prediction of mortality risk in patients with acute organophosphate poisoning-induced shock,” Front. Med., vol. 9, p. 990934, 2023, doi: https://doi.org/10.3389/fmed.2022.990934.
[64] X. Yao et al., “Interfacial properties of the nitrogen + water system in the presence of hydrophilic silica,” Ind. Eng. Chem. Res., vol. 63, no. 13, pp. 5765–5772, Apr. 2024, doi: https://doi.org/10.1021/acs.iecr.3c04541.
[65] I.M. Islam et al., “Facile fabrication and characterization of amine-functional silica coated magnetic iron oxide nanoparticles for aqueous carbon dioxide adsorption,” ACS Omega, vol. 9, no. 19, pp. 20891–20905, May 2024, doi: https://doi.org/10.1021/acsomega.3c10082.
Refbacks
- There are currently no refbacks.