Nanocellulose for Military Textiles: Innovations, Applications, and Challenges

Sulfi Indriani, Sri Yanto, I Nengah Putra

Abstract

Military textiles must withstand ballistic threats, high temperatures, and chemical exposure while remaining lightweight, durable, and multifunctional. Nanocellulose, especially cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC), offers high specific strength, biodegradability, and tunable surface chemistry, making it a promising complement to conventional high performance fibers such as aramid. This structured review synthesizes peer reviewed studies published from 2015 to 2025 and retrieved from Scopus, Web of Science, and ScienceDirect, focusing on ballistic resistance, flame retardancy, and antibacterial functionality. Evidence shows that CNF and CNC reinforcement improves energy dissipation networks and strength to weight ratios, with several composites approaching aramid based benchmarks. For flame protection, nanocellulose coatings and hybrid layers reduce peak heat release rates by up to 38% and promote dense char barriers that limit heat and mass transfer. Antibacterial performance is typically achieved through functionalization with Ag, ZnO, or chitosan, often delivering over 90% inhibition of Escherichia coli and Staphylococcus aureus. Key barriers include production cost and scalability, moisture sensitivity that can reduce long term durability, and weak interfacial compatibility with aramid and ultra high molecular weight polyethylene (UHMWPE). Future work should prioritize scalable green manufacturing, interface engineering for durable hybrids, and validation under military relevant durability and laundering standards. Overall, nanocellulose is a strong candidate for next generation sustainable military textiles.

Keywords

Nanocellulose; Military Textiles; Ballistic Resistance; Flame Retardancy; Antibacterial Properties

References

[1] E. Wilusz, “Military textiles WPNL0206.” [Online]. Available: www.woodheadpublishing.com.

[2] A. K. Yetisen et al., “Nanotechnology in Textiles,” ACS Nano. Mar. 22, 2016, American Chemical Society. doi: 10.1021/acsnano.5b08176.

[3] X. Ma, Y. Wang, Y. Shen, J. Huang, and A. Dufresne, “6 Current Status of Nanocellulose-Based Nanocomposites,” 2019. [Online]. Available: http://ebookcentral.proquest.com/lib/indonesiau-ebooks/detail.action?docID=5732756.

[4] M. Syduzzaman, A. Hassan, H. R. Anik, M. Akter, and M. R. Islam, “Nanotechnology for High-Performance Textiles: A Promising Frontier for Innovation,” Sep. 01, 2023, John Wiley and Sons Inc. doi: 10.1002/cnma.202300205.

[5] N. M. Nurazzi et al., “A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications,” Polymers (Basel), vol. 13, no. 4, pp. 1–42, Feb. 2021, doi: 10.3390/polym13040646.

[6] T. M. Abou Elmaaty, H. Elsisi, G. Elsayad, H. Elhadad, and M. R. Plutino, “Recent Advances in Functionalization of Cotton Fabrics with Nanotechnology,” Oct. 01, 2022, MDPI. doi: 10.3390/polym14204273.

[7] P. I. Dolez, S. Marsha, and R. H. McQueen, “Fibers and Textiles for Personal Protective Equipment: Review of Recent Progress and Perspectives on Future Developments,” Jun. 01, 2022, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/textiles2020020.

[8] M. N. F. Norrrahim et al., “Nanocellulose: The next super versatile material for the military,” Mar. 07, 2021, Royal Society of Chemistry. doi: 10.1039/d0ma01011a.

[9] Sayam, “Nanocellulose in Textiles: A Potential Resource for Sustainable Textile Manufacturing,” Dec. 22, 2023. doi: 10.26434/chemrxiv-2023-94r25.

[10] H. Mohit and V. Arul Mozhi Selvan, “A comprehensive review on surface modification, structure interface and bonding mechanism of plant cellulose fiber reinforced polymer based composites,” Jul. 03, 2018, Taylor and Francis Ltd. doi: 10.1080/09276440.2018.1444832.

[11] M. R. M. Asyraf, M. R. Ishak, S. M. Sapuan, and N. Yidris, “Utilization of bracing arms as additional reinforcement in pultruded glass fiber-reinforced polymer composite cross-arms: Creep experimental and numerical analyses,” Polymers (Basel), vol. 13, no. 4, pp. 1–16, Feb. 2021, doi: 10.3390/polym13040620.

[12] N. Domun et al., “Ballistic impact behaviour of glass fibre reinforced polymer composite with 1D/2D nanomodified epoxy matrices,” Compos B Eng, vol. 167, pp. 497–506, Jun. 2019, doi: 10.1016/j.compositesb.2019.03.024.

[13] P. R. Sonawane, D. M. Deshmukh, V. A. Utikar, S. S. Jadhav, and G. A. Deshpande, “Nanocellulose in Metals: Advancing Sustainable Practices in Metal Refining and Extraction Processes,” Journal of Mines, Metals and Fuels, vol. 71, no. 12, pp. 2773–2783, Dec. 2023, doi: 10.18311/jmmf/2023/41768.

[14] R. Shen et al., “Research progress and development demand of nanocellulose reinforced polymer composites,” Polymers (Basel), vol. 12, no. 9, Sep. 2020, doi: 10.3390/POLYM12092113.

[15] U. O. Costa et al., “Effect of graphene oxide coating on natural fiber composite for multilayered ballistic armor,” Polymers (Basel), vol. 11, no. 8, Aug. 2019, doi: 10.3390/polym11081356.

[16] B. Z. Marchi et al., “Ballistic Performance, Thermal and Chemical Characterization of Ubim Fiber (Geonoma baculifera) Reinforced Epoxy Matrix Composites,” Polymers (Basel), vol. 15, no. 15, Aug. 2023, doi: 10.3390/polym15153220.

[17] A. T. Souza et al., “Ballistic Properties and Izod Impact Resistance of Novel Epoxy Composites Reinforced with Caranan Fiber (Mauritiella armata),” Polymers (Basel), vol. 14, no. 16, Aug. 2022, doi: 10.3390/polym14163348.

[18] L. C. da C. Demosthenes, F. S. da Luz, L. F. C. Nascimento, and S. N. Monteiro, “Buriti Fabric Reinforced Epoxy Composites as a Novel Ballistic Component of a Multilayered Armor System,” Sustainability (Switzerland), vol. 14, no. 17, Sep. 2022, doi: 10.3390/su141710591.

[19] R. A. Kamal and M. A. Ghofur, “Analisis Uji Balistik Komposit Serat Pelepah Salak Dengan Resin Epoksi dan Silicon Carbida (SiC) Menggunakan Metode Vacuum Bag,” Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia (SENASTINDO), vol. 3, pp. 333–344, Dec. 2021, doi: 10.54706/senastindo.v3.2021.140.

[20] V. N. Garjati, V. Rizkia, N. A. Anggraeni, and Muslimin, “Studi Pengaruh Penambahan 5wt.% dan 10wt.% Serat Pelepah Salak pada Manufaktur Komposit Epoxy berpenguat Serat Kevlar dan Serat Karbon dengan Metode Vacuum Assisted Resin Transfer Molding (VARTM) untuk Aplikasi Rompi Tahan Peluru,” Journal of Applied Mechanical Technology, vol. 2, no. 2, pp. 1–11, Nov. 2023, doi: 10.31884/jamet.v2i2.32.

[21] Z. Cai, Z. Li, J. Dong, Z. Mao, L. Wang, and C. J. Xian, “A study on protective performance of bullet-proof helmet under impact loading,” Journal of Vibroengineering, vol. 18, no. 4, pp. 2495–2507, 2016, doi: 10.21595/jve.2015.16497.

[22] L. Mishnaevsky, L. P. Mikkelsen, A. N. Gaduan, K. Y. Lee, and B. Madsen, “Nanocellulose reinforced polymer composites: Computational analysis of structure-mechanical properties relationships,” Compos Struct, vol. 224, Sep. 2019, doi: 10.1016/j.compstruct.2019.111024.

[23] J. Liang, T. Zhou, Y. Fu, G. Tian, Y. Zhang, and Z. Wang, “Pretreated cellulose fiber for enhancing fire resistance of flexible polyurethane foam composites with reinforced properties,” Ind Crops Prod, vol. 205, Dec. 2023, doi: 10.1016/j.indcrop.2023.117429.

[24] X. Hao, K. Mou, X. Jiang, and R. Cha, “High-value Applications of Nanocellulose,” Paper and Biomaterials, vol. 2, no. 4, pp. 58–64, 2017, doi: 10.26599/PBM.2017.9260027.

[25] D. Wang et al., “Bioinspired Lamellar Barriers for Significantly Improving the Flame-Retardant Properties of Nanocellulose Composites,” ACS Sustain Chem Eng, vol. 8, no. 11, pp. 4331–4336, Mar. 2020, doi: 10.1021/acssuschemeng.9b07745.

[26] F. Carosio, L. Medina, J. Kochumalayil, and L. A. Berglund, “Green and Fire Resistant Nanocellulose/Hemicellulose/Clay Foams,” Adv Mater Interfaces, vol. 8, no. 18, Sep. 2021, doi: 10.1002/admi.202101111.

[27] M. Andzs et al., “Flammability of Plant-Based Loose-Fill Thermal Insulation: Insights from Wheat Straw, Corn Stalk, and Water Reed,” Fibers, vol. 13, no. 3, p. 24, Feb. 2025, doi: 10.3390/fib13030024.

[28] I. Turku, A. Rohumaa, T. Tirri, and L. Pulkkinen, “Progress in Achieving Fire-Retarding Cellulose-Derived Nano/Micromaterial-Based Thin Films/Coatings and Aerogels: A Review,” Jan. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/fire7010031.

[29] N. K. Kim, D. Bhattacharyya, M. van Loosdrecht, and Y. Lin, “Enhancement of fire resistance and mechanical performance of polypropylene composites containing cellulose fibres and extracellular biopolymers from wastewater sludge,” Polym Test, vol. 127, Oct. 2023, doi: 10.1016/j.polymertesting.2023.108185.

[30] M. Tavakoli, A. Ghasemian, M. R. Dehghani-Firouzabadi, and B. Mazela, “Cellulose and its nano-derivatives as a water-repellent and fire-resistant surface: A review,” Jan. 01, 2022, MDPI. doi: 10.3390/ma15010082.

[31] B. Kuai et al., “Development of super dimensional stable poplar structure with fire and mildew resistance by delignification/densification of wood with highly aligned cellulose molecules,” Int J Biol Macromol, vol. 257, Feb. 2024, doi: 10.1016/j.ijbiomac.2023.128572.

[32] W. Guo, X. Wang, P. Zhang, J. Liu, L. Song, and Y. Hu, “Nano-fibrillated cellulose-hydroxyapatite based composite foams with excellent fire resistance,” Carbohydr Polym, vol. 195, pp. 71–78, Sep. 2018, doi: 10.1016/j.carbpol.2018.04.063.

[33] M. Oprea and D. Mihaela Panaitescu, “Nanocellulose hybrids with metal oxides nanoparticles for biomedical applications,” Molecules, vol. 25, no. 18, Sep. 2020, doi: 10.3390/molecules25184045.

[34] M. Q. Khan et al., “Fabrication of antibacterial electrospun cellulose acetate/ silver-sulfadiazine nanofibers composites for wound dressings applications,” Polym Test, vol. 74, pp. 39–44, Apr. 2019, doi: 10.1016/j.polymertesting.2018.12.015.

[35] F. Wahid et al., “Reusable ternary PVA films containing bacterial cellulose fibers and ε-polylysine with improved mechanical and antibacterial properties,” Colloids Surf B Biointerfaces, vol. 183, Nov. 2019, doi: 10.1016/j.colsurfb.2019.110486.

[36] N. Agrawal, J. S. J. Tan, P. S. Low, E. W. M. Fong, Y. Lai, and Z. Chen, “Green Synthesis of Robust Superhydrophobic Antibacterial and UV-Blocking Cotton Fabrics by a Dual-Stage Silanization Approach,” Adv Mater Interfaces, vol. 6, no. 11, Jun. 2019, doi: 10.1002/admi.201900032.

[37] T. Hamouda, H. M. Ibrahim, H. H. Kafafy, H. M. Mashaly, N. H. Mohamed, and N. M. Aly, “Preparation of cellulose-based wipes treated with antimicrobial and antiviral silver nanoparticles as novel effective high-performance coronavirus fighter,” Int J Biol Macromol, vol. 181, pp. 990–1002, Jun. 2021, doi: 10.1016/j.ijbiomac.2021.04.071.

[38] L. Panariello, M. B. Coltelli, M. Buchignani, and A. Lazzeri, “Chitosan and nano-structured chitin for biobased anti-microbial treatments onto cellulose based materials,” Eur Polym J, vol. 113, pp. 328–339, Apr. 2019, doi: 10.1016/j.eurpolymj.2019.02.004.

[39] S. Ye et al., “Morphological, release and antibacterial performances of amoxicillin-loaded cellulose aerogels,” Molecules, vol. 23, no. 8, Aug. 2018, doi: 10.3390/molecules23082082.

[40] S. Du et al., “Preparation of natural antibacterial regenerated cellulose fiber from seed-type hemp,” Ind Crops Prod, vol. 208, Feb. 2024, doi: 10.1016/j.indcrop.2023.117873.

[41] M. Świerczyńska, Z. Mrozińska, M. Juszczak, K. Woźniak, and M. H. Kudzin, “Preparation and Biochemical Activity of Copper-Coated Cellulose Nonwoven Fabric via Magnetron Sputtering and Alginate-Calcium Ion Complexation,” Mar Drugs, vol. 22, no. 10, Oct. 2024, doi: 10.3390/md22100436.

[42] D. Trache et al., “Nanocellulose: From Fundamentals to Advanced Applications,” May 06, 2020, Frontiers Media S.A. doi: 10.3389/fchem.2020.00392.

[43] A. Anceschi, C. Riccardi, and A. Patrucco, “The Role of Ionic Liquids in Textile Processes: A Comprehensive Review,” Jan. 01, 2025, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/molecules30020353.

[44] W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X. M. Tao, “Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications,” Aug. 20, 2014, Wiley-VCH Verlag. doi: 10.1002/adma.201400633.

[45] D. Klemm et al., “Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state,” Sep. 01, 2018, Elsevier B.V. doi: 10.1016/j.mattod.2018.02.001.

[46] A. Janićijević et al., “Structural Characterization of Nanocellulose/Fe3 O4 Hybrid Nanomaterials,” Polymers (Basel), vol. 14, no. 9, May 2022, doi: 10.3390/polym14091819.

[47] M. Ö. Seydibeyoğlu et al., “Review on Hybrid Reinforced Polymer Matrix Composites with Nanocellulose, Nanomaterials, and Other Fibers,” Feb. 01, 2023, MDPI. doi: 10.3390/polym15040984.

[48] K. Heise et al., “Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications,” Jan. 01, 2021, Wiley-VCH Verlag. doi: 10.1002/adma.202004349.

[49] E. Aigaje, A. Riofrio, and H. Baykara, “Processing, Properties, Modifications, and Environmental Impact of Nanocellulose/Biopolymer Composites: A Review,” Mar. 01, 2023, MDPI. doi: 10.3390/polym15051219

Refbacks

  • There are currently no refbacks.