Synthesis and Characterization of Sucrose-Modified CaO Catalyst Derived from Dolomite for Transesterification of Reutealis trisperma Oil
Abstract
Keywords
Full Text:
PDFReferences
[1] International Energy Agency, World Energy Outlook 2023, Paris, France: IEA, Nov. 2023. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2023
[2] A. Haryadi, B. Sutrisno, and D. Rahayu, “Greenhouse gas emissions and renewable alternatives,” Energy Rep., vol. 7, pp. 305-312, 2021, doi: https://doi.org/10.1016/j.egyr.2020.11.189
[3] F. Ramadhani et al., “Biodiesel production from non-edible oil: Current status and prospects,” Renew. Sustain. Energy Rev., vol. 135, Jan. 2022, doi: https://doi.org/10.1016/j.rser.2020.110348
[4] M. Y. Abduh et al., “Economic assessment of biodiesel feedstock,” J. Clean. Prod., vol. 271, Oct. 2020, doi: https://doi.org/10.1016/j.jclepro.2020.122130
[5] M. Ghozali et al., “Utilization of Reutealis trisperma as non-edible biodiesel source,” Fuel, vol. 281, Dec. 2020, doi: https://doi.org/10.1016/j.fuel.2020.118829
[6] N. Widiarti et al., “FFA content reduction and its effect on biodiesel yield,” Biofuels, vol. 15, no. 2, pp. 123-132, 2024, doi: https://doi.org/10.1080/17597269.2023.2230876
[7] X. Cheng et al., “Development of solid base catalysts tolerant to FFA,” Energy Convers. Manag., vol. 234, Apr. 2021, doi: https://doi.org/10.1016/j.enconman.2021.113989
[8] R. Hasibuan et al., “Performance of CaO derived from natural sources,” Catalysts, vol. 12, no. 7, Jul. 2022, doi: https://doi.org/10.3390/catal12070711
[9] H. Marpaung et al., “Effect of MgO on CaO-based catalyst activity,” Ind. Eng. Chem. Res., vol. 59, no. 13, pp. 5993-6001, 2020, doi: https://doi.org/10.1021/acs.iecr.9b05837
[10] R. Palitsakun et al., “Dolomite-derived CaO catalyst for biodiesel synthesis,” Appl. Catal. B, Environ., vol. 298, Dec. 2021, doi: https://doi.org/10.1016/j.apcatb.2021.120597
[11] M. Altiner, “Hazards of acid leaching in catalyst synthesis,” Green Chem., vol. 21, no. 17, pp. 4567-4573, 2019, doi: https://doi.org/10.1039/C9GC02008B
[12] D. A. Prasetyo et al., “Sucrose-assisted separation in dolomite refining,” J. Environ. Chem. Eng., vol. 8, no. 4, Aug. 2020, doi: https://doi.org/10.1016/j.jece.2020.104644
[13] M. R. Ginting et al., “Role of sucrose as soft template in catalyst synthesis,” Mater. Chem. Phys., vol. 262, Apr. 2021, doi: https://doi.org/10.1016/j.matchemphys.2021.124
[14] A. M. Rabie et al., “Hydrothermal treatment effect on catalyst morphology,” J. Mol. Catal. A, Chem., vol. 487, May 2019, doi: https://doi.org/10.1016/j.molcata.2019.01.010
[15] R. Anjani and S. Suherman, “Catalytic activity of untreated dolomite,” Biofuel Res. J., vol. 8, no. 4, pp. 221-227, 2021. [Online]. Available: http://www.biofueljournal.com/article_13496.html
[16] M. N. Sinaga et al., “Oxalic acid purification and MgO residues,” Fuel Process. Technol., vol. 209, Dec. 2021, doi: https://doi.org/10.1016/j.fuproc.2020.106579
[17] M. Bedir and F. Dogan, “Spectroscopic investigation of calcium oxide catalysts,” Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 252, May 2021, doi: https://doi.org/10.1016/j.saa.2021.119553
[18] C. Luo, Y. Ju, M. Giannakis, P. Dong, dan A. Wang, “A novel methodology to select sustainable municipal solid waste management scenarios from three-way decisions perspective,” Journal of Cleaner Production, vol. 280, pt. 2, Art. no. 124312, 2021, doi: https://doi.org/10.1016/j.jclepro.2020.124312
[19] A. Kurniawan, W. Setyaningsih, and R. Hartono, “Effect of hydrothermal treatment on crystallinity of CaO catalyst from dolomite,” J. Environ. Chem. Eng., vol. 9, no. 5, Oct. 2021, doi: https://doi.org/10.1016/j.jece.2021.106458
[20] H. Bedir and F. Dogan, “Synthesis and FTIR characterization of CaO derived from natural shells for biodiesel production,” Renew. Energy, vol. 134, pp. 618-626, Apr. 2019, doi: https://doi.org/10.1016/j.renene.2018.10.035
[21] A. P. Sari, K. Wijaya, and A. Nugroho, “Effect of carbonate residue on the basicity and catalytic activity of CaO catalyst,” Indones. J. Chem., vol. 20, no. 3, pp. 612-620, 2020, doi: https://doi.org/10.22146/ijc.44877
[22] H. Hassan and C. Li, “Impact of catalyst morphology and porosity on biodiesel synthesis using CaO-based materials,” Appl. Catal. A, Gen., vol. 521, pp. 89-97, Jun. 2016, doi: https://doi.org/10.1016/j.apcata.2016.06.003
[23] M. S. Rahman, M. M. Hasan, and M. T. Islam, “Influence of nanoscale CaO particle size on transesterification kinetics,” Fuel, vol. 304, Nov. 2021, doi: https://doi.org/10.1016/j.fuel.2021.121334
[24] N. A. Putri, D. A. Permatasari, and N. A. Pambudi, “Nanostructured CaO for biodiesel synthesis: Effect of particle size on reaction efficiency,” J. Clean. Prod., vol. 346, Apr. 2022, doi: https://doi.org/10.1016/j.jclepro.2022.131179
[25] B. P. Lim and Y. H. Taufiq-Yap, “Effect of pore structure on the catalytic activity of CaO derived from natural waste,” Appl. Surf. Sci., vol. 403, pp. 174-182, May 2017, doi: https://doi.org/10.1016/j.apsusc.2017.01.152
Refbacks
- There are currently no refbacks.






