Cover Image

A Simple Colorimetric Detection of Bisphenol A in Exposed Drinking Bottles Using a Paper-Based Sensor

Ganjar Fadillah, Agung Guritno, Akhmarin Rista Ashri, Putri Fahria Lesmana, Fatmawati Fatmawati, Gus Nizar Zahardin, Nur Apriyani

Abstract

Bisphenol-A (BPA) is a chemical widely used in the production of polycarbonate plastics and epoxy resins, commonly found in bottled water containers. BPA migration into drinking water can occur due to variations in pH and temperature during storage, posing potential health risks with prolonged exposure. This study focuses on the development of a rapid and accurate colorimetric paper sensor for BPA detection. The sensor employs a chromogenic reagent that selectively reacts with BPA, resulting in a visible color change from yellow to dark red. Experimental results demonstrated that the sensor exhibits high sensitivity, with a limit of detection (LOD) of approximately 0.29 mmol L⁻¹. Validation using water samples from plastic bottles exposed to environmental conditions confirmed the sensor’s capability to effectively identify BPA leaching. Additionally, the sensor showed excellent stability, indicated by a relative standard deviation (%RSD) of 0.62%, and high accuracy, with recovery values ranging from 100.87% to 107.39%. These findings suggest that the developed colorimetric paper sensor is a promising tool for on-site monitoring of BPA contamination in drinking water, providing a simple, fast, and cost-effective alternative to conventional analytical methods.

Keywords

Bisphenol A (BPA); Paper-based sensor; Colorimetric detection; Drinking water safety; Environmental monitoring.

Full Text:

PDF

References

[1] V. McGovern, "Polycarbonate plastics and human BPA exposure: urinary levels rise with use of drinking bottles," Environ. Health Perspect., vol. 117, no. 9, p. A406, Sep. 2009, doi: 10.1289/ehp.117-a406b.

[2] Y. Xiong et al., "BPA-free? Exploring the reproductive toxicity of BPA substitutes BPS and BPF on endometrial decidualization," Ecotoxicol. Environ. Saf., vol. 287, p. 117275, Nov. 2024, doi: 10.1016/j.ecoenv.2024.117275.

[3] J. O. Ighalo et al., "Bisphenol A (BPA) toxicity assessment and insights into current remediation strategies," RSC Adv., vol. 14, no. 47, pp. 35128–35162, Nov. 2024, doi: 10.1039/d4ra05628k.

[4] D. Ginter-Kramarczyk, J. Zembrzuska, I. Kruszelnicka, A. Zając-Woźnialis, and M. Ciślak, "Influence of temperature on the quantity of bisphenol A in bottled drinking water," Int. J. Environ. Res. Public Health, vol. 19, no. 9, May 2022, doi: 10.3390/ijerph19095710.

[5] G. Fadillah, S. Triana, U. Chasanah, and T. A. Saleh, "Titania-nanorods modified carbon paste electrode for the sensitive voltammetric determination of BPA in exposed bottled water," Sens. Bio-Sens. Res., vol. 30, p. 100391, Dec. 2020, doi: 10.1016/j.sbsr.2020.100391.

[6] S.-H. Nam, Y.-M. Seo, and M.-G. Kim, "Bisphenol A migration from polycarbonate baby bottle with repeated use," Chemosphere, vol. 79, no. 9, pp. 949–952, May 2010, doi: 10.1016/j.chemosphere.2010.02.049.

[7] F. S. Vom Saal and L. N. Vandenberg, "Update on the health effects of bisphenol A: Overwhelming evidence of harm," Endocrinology, vol. 162, no. 3, Mar. 2021, doi: 10.1210/endocr/bqaa171.

[8] M. E. Cull and L. M. Winn, "Bisphenol A and its potential mechanism of action for reproductive toxicity," Toxicology, vol. 511, p. 154040, Feb. 2025, doi: 10.1016/j.tox.2024.154040.

[9] X. Xie et al., "BPA exposure enhances the metastatic aggression of ovarian cancer through the ERα/AKT/mTOR/HIF-1α signaling axis," Food Chem. Toxicol., vol. 176, p. 113792, Jun. 2023, doi: 10.1016/j.fct.2023.113792.

[10] H. Dilnashin, D. Singh, P. Roy, R. K. Tyagi, and S. P. Singh, "Advances in analytical methods for BPA detection in commercial milk: Current techniques and future prospects," J. Food Compos. Anal., vol. 139, p. 107029, Mar. 2025, doi: 10.1016/j.jfca.2024.107029.

[11] A. B. Bashir and A. A. Audu, "Determination of bisphenol A released from polycarbonate infant feeding bottles by UV-VIS spectrophotometry," J. Chem. Soc. Niger., vol. 45, no. 6, Nov. 2020, doi: 10.46602/jcsn.v45i6.555.

[12] C.-E. Pop et al., "Bisphenol A analysis and quantification inconsistencies via HPLC-UV: A systematic review with technical notes," Discov. Appl. Sci., vol. 6, no. 4, p. 171, Mar. 2024, doi: 10.1007/s42452-023-05617-z.

[13] K. Owczarek et al., "Validated GC–MS method for determination of bisphenol A and its five analogues in dietary and nutritional supplements," Microchem. J., vol. 180, p. 107643, Sep. 2022, doi: 10.1016/j.microc.2022.107643.

[14] M. Chen et al., "Determination of bisphenol-A levels in human amniotic fluid samples by liquid chromatography coupled with mass spectrometry," J. Sep. Sci., vol. 34, no. 14, pp. 1648–1655, Jul. 2011, doi: 10.1002/jssc.201100152.

[15] J. Kochana et al., "Tyrosinase-based biosensor for determination of bisphenol A in a flow-batch system," Talanta, vol. 144, May 2015, doi: 10.1016/j.talanta.2015.05.078.

[16] V. Ragavan K, N. Rastogi, and M. Thakur, "Sensors and biosensors for analysis of bisphenol-A," TrAC Trends Anal. Chem., vol. 52, pp. 248–260, Dec. 2013, doi: 10.1016/j.trac.2013.09.006.

[17] D. Voutsa, "Analytical methods for determination of bisphenol A," in Plastics in Dentistry and Estrogenicity: A Guide to Safe Practice, T. Eliades and G. Eliades, Eds. Berlin, Germany: Springer, 2014, pp. 51–77.

[18] R. Hidayat, S. Wahyuningsih, and G. Fadillah, "Green synthesis approach to produce TiO2/rGO nanocomposite as voltammetric sensor for monitoring trace level bisphenol-A," Mater. Sci. Eng. B, vol. 286, p. 116083, Dec. 2022, doi: 10.1016/j.mseb.2022.116083.

[19] P. Kumar, Shimali, S. Chamoli, and K. R. Khondakar, "Advances in optical and electrochemical sensing of bisphenol A utilizing microfluidic technology: A mini perspective," Methods, vol. 220, pp. 69–78, Dec. 2023, doi: 10.1016/j.ymeth.2023.11.004.

[20] L. A. Putri et al., "Review of noble metal nanoparticle-based colorimetric sensors for food safety monitoring," ACS Appl. Nano Mater., Aug. 2024, doi: 10.1021/acsanm.4c04327.

[21] G. K. Mahunu, N. A. Afoakwah, and H. E. Tahir, "Fundamentals of colorimetric sensors for food quality and safety," in Colorimetric Sensors, Academic Press, 2024, pp. 17–35.

[22] S. Mansouri et al., "Recent progress of smartphone-assisted paper-based analytical devices (PADs) for multiplex sensing," Microchem. J., vol. 209, p. 112670, Feb. 2025, doi: 10.1016/j.microc.2025.112670.

[23] E.-H. Lee, S. K. Lee, M. J. Kim, and S.-W. Lee, "Simple and rapid detection of bisphenol A using a gold nanoparticle-based colorimetric aptasensor," Food Chem., vol. 287, pp. 205–213, Jul. 2019, doi: 10.1016/j.foodchem.2019.02.079.

[24] S. Medici et al., "An updated overview on metal nanoparticles toxicity," Semin. Cancer Biol., vol. 76, pp. 17–26, Nov. 2021, doi: 10.1016/j.semcancer.2021.06.020.

[25] C. Li and J.-B. Baek, "Recent advances in noble metal-based electrocatalysts for hydrogen evolution reaction," ACS Omega, vol. 5, no. 1, pp. 31–40, Jan. 2020, doi: 10.1021/acsomega.9b03550.

[26] J. Ma et al., "Dual-mode sensing platform for bisphenol A detection via bifunctional CsPbBr3@Cu-MOF," Anal. Chim. Acta, vol. 1332, p. 343354, Dec. 2024, doi: 10.1016/j.aca.2024.343354.

[27] W. Cheng et al., "Applications of MOF-based sensors for food safety," Trends Food Sci. Technol., vol. 112, pp. 268–282, Jun. 2021, doi: 10.1016/j.tifs.2021.04.004.

[28] A. Khataee et al., "State-of-the-art progress of MOF-based sensing platforms for bisphenol A," Environ. Res., vol. 212, p. 113536, Sep. 2022, doi: 10.1016/j.envres.2022.113536.

[29] A. Sakthivel et al., "Recent advances in schiff base metal complexes from 4-aminoantipyrine derivatives," J. Mol. Struct., vol. 1222, p. 128885, Dec. 2020, doi: 10.1016/j.molstruc.2020.128885.

[30] Y. Fiamegos, C. Stalikas, and G. Pilidis, "4-Aminoantipyrine spectrophotometric method of phenol analysis," Anal. Chim. Acta, vol. 467, no. 1, pp. 105–114, Sep. 2002, doi: 10.1016/S0003-2670(02)00072-7.

[31] T. Yu et al., "Catalytic effect of K3Fe(CN)6 on hydrogen production from coal electro-oxidation," Electrochim. Acta, vol. 83, pp. 485–489, Nov. 2012, doi: 10.1016/j.electacta.2012.08.010.

[32] M. M. A. Nigjeh and M. Askarzadeh, "Green and inexpensive method to recover bisphenol-A from polycarbonate wastes," Polímeros, vol. 23, Feb. 2013, doi: 10.1590/S0104-14282013005000019.

[33] L. Jiang et al., "Cellulose-derived supercapacitors from carbonisation of filter paper," ChemistryOpen, vol. 4, Jul. 2015, doi: 10.1002/open.201500150.

Refbacks

  • There are currently no refbacks.