Application of Edible Coating Based on Jackfruit Seed Flour and Alginate on The Quality of Tomato Fruits

Alif Eva Mili Ani, Ahmad Zaki Mubarok, Erni Sofia Murtini

Abstract

Enhancing post-harvest handling is crucial to boost productivity, preserve product quality, and enhance the competitiveness of food commodities. One effective approach to maintain product quality is by using edible coating, and in this case, alginate-based edible coating has been employed. The alginate-based edible coating exhibits a deficiency in terms of its inadequate mechanical properties. The addition of starch could improve the mechanical properties of alginate-based edible coating. Jackfruit seed starch has the potential to valorize as a cost-effective source of starch. Jackfruit seed flour has unique starch characteristics related to acid resistance, thermal properties, and mechanical properties when compared with starch from other sources. This study aims to optimize the concentration of alginate and jackfruit seed flour in the preparation of tomato edible coating using Response Surface Methodology (RSM). The effect of alginate concentration (1-2% b/v) and jackfruit seed flour concentration (1-2% b/v) on mass loss (%) and color difference (ΔE) were investigated. The optimum condition was obtained at an alginate concentration of 1.5% b/v and jackfruit seed flour concentration of 1.0% b/v with the resulting tomato quality value of mass loss of 5.43% and color difference (ΔE) of 0.70.

Keywords

quality; post-harvest; color changes; shelf life

References

Ali, A., Maqbool, M., Ramachandran, S., dan Alderson, P. G. (2010). Gum arabic as a novel edible coating for enhancing shelf-life and improving postharvest quality of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 58(1), 42–47. https://doi.org/10.1016/j.postharvbio.2010.05.005

Azarakhsh, N., Osman, A., Ghazali, H. M., Tan, C. P., dan Mohd Adzahan, N. (2012). Optimization of alginate and gellan-based edible coating formulations for fresh-cut pineapples. International Food Research Journal, 19(1). 279-285. Retrieved from http://www.ifrj.upm.edu.my/19%20(01)%202011/(37)IFRJ-2011-139%20Azizah.pdf

Fazilah, A., Maizura, M., Abd Karim, A., Bhupinder, K., dan Rajeev, B. (2011). Physical and mechanical properties of sago starch--alginate films incorporated with calcium chloride. International Food Research Journal, 18(3). Retrieved from http://www.ifrj.upm.edu.my/18%20(03)%202011/25)IFRJ-2010-274.pdf

Guimarães, G. H. C., Dantas, R. L., de Sousa, A. S. B., Soares, L. G., da Silva, R. S., Lima, R. P., Mendonça, R. M. N., Beaudry, R. M., dan de Melo Silva, S. (2017). Impact of cassava starch-alginate based coatings added with ascorbic acid and elicitor on quality and sensory attributes during pineapple storage. African Journal of Agricultural Research, 12(9), 664–673. https://doi.org/10.5897/ajar2016.11652

Hadi, A., Nawab, A., Alam, F., dan Zehra, K. (2022). Alginate/aloe vera films reinforced with tragacanth gum. Food Chemistry: Molecular Sciences, 4, 100105. https://doi.org/10.1016/j.fochms.2022.100105

Jongsri, P., Wangsomboondee, T., Rojsitthisak, P., dan Seraypheap, K. (2016). Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. Lwt, 73, 28–36. https://doi.org/10.1016/j.lwt.2016.05.038

Lestari, R. B., Munir, A. M. S., dan Tribudi, Y. A. (2018). Pemanfaatan kitosan kulit udang dengan penambahan ekstrak daun kesum sebagai penghambat bakteri pada edible coating. Jurnal Teknologi Pertanian, 19(3), 207–214. https://doi.org/10.21776/ub.jtp.2018.019.03.7

Nayak, A. K., dan Pal, D. (2013). Formulation optimization and evaluation of jackfruit seed starch–alginate mucoadhesive beads of metformin HCl. International Journal of Biological Macromolecules, 59, 264–272. https://doi.org/10.1016/j.ijbiomac.2013.04.062

Ningrum, R. S., Sondari, D., Amanda, P., Widyaningrum, B. A., Burhani, D., Akbar, F., dan Sampora, Y. (2020). Properties of edible film from modified sago starch precipitated by butanol. Jurnal Sains Materi Indonesia, 21(4), 164–171. https://doi.org/10.17146/jsmi.2020.21.4.6022

Rodriguez-Lafuente, A., Nerin, C., dan Batlle, R. (2010). Active paraffin-based paper packaging for extending the shelf life of cherry tomatoes. Journal of Agricultural and Food Chemistry, 58(11), 6780–6786. https://doi.org/10.1021/jf100728n

Salama, H. E., dan Aziz, M. S. A. (2020). Optimized alginate and Aloe vera gel edible coating reinforced with nTiO2 for the shelf-life extension of tomatoes. International Journal of Biological Macromolecules, 165, 2693–2701. https://doi.org/10.1016/j.ijbiomac.2020.10.108

Vaishali, Sharma, H. P., Samsher, Chaudhary, V., Sunil, dan Kumar, M. (2019). Importance of edible coating on fruits and vegetables: A review. Journal of Pharmacognosy and Phytochemistry, 8(3), 4104–4110. Retrieved from https://www.phytojournal.com/archives/2019/vol8issue3/PartBI/8-3-524-110.pdf

Susilowati, P. E., Fitri, A., dan Natsir, M. (2017). Penggunaan pektin kulit buah kakao sebagai edible coating pada kualitas buah tomat dan masa simpan. Jurnal Aplikasi Teknologi Pangan, 6(2). 1-4 https://doi.org/10.17728/jatp.193

Tavassoli-Kafrani, E., Shekarchizadeh, H., dan Masoudpour-Behabadi, M. (2016). Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, 137, 360–374. https://doi.org/10.1016/j.carbpol.2015.10.074

Vunnam, R., Hussain, A., Nair, G., Bandla, R., Gariepy, Y., Donnelly, D. J., Kubow, S., dan Raghavan, G. S. V. (2014). Physico-chemical changes in tomato with modified atmosphere storage and UV treatment. Journal of Food Science and Technology, 51, 2106–2112. https://doi.org/10.1007/s13197-012-0690-3

Widaningrum, W., Miskiyah, M., dan Winarti, C. (2015). Edible coating berbasis pati sagu dengan penambahan antimikroba minyak sereh pada paprika: preferensi konsumen dan mutu vitamin c. Agritech, 35(1), 53–60. https://doi.org/10.22146/agritech.9419

Xanthopoulos, G. T., Athanasiou, A. A., Lentzou, D. I., Boudouvis, A. G., dan Lambrinos, G. P. (2014). Modeling of transpiration rate of grape tomatoes. Semi-empirical and analytical approach. Biosystems Engineering, 124, 16–23. https://doi.org/10.1016/j.biosystemseng.2014.06.005

Refbacks

  • There are currently no refbacks.