Discriminant Analysis of Students' Spatial Ability in Understanding Flat-Sided Geometric Shapes
Abstract
Spatial ability is a crucial aspect that supports students in visualizing and understanding abstract mathematical concepts, particularly flat-sided geometric shapes in geometry learning. This study aims to identify the factors that differentiate students with low and high spatial abilities through discriminant analysis. The factors analyzed include Mental Rotation, Spatial Orientation, Visualization, Spatial Relation, and Spatial Perception, measured using a spatial ability test. The test instrument consisted of five questions developed based on the spatial ability framework offered by Maier and validated by mathematics and learning evaluation experts. A total of 34 ninth-grade students from a junior high school in Tangerang Regency were selected through purposive sampling. The analysis results showed that Visualization, Spatial Relation, and Spatial Perception were the main predictors that significantly differentiated the two groups. Visualization supports the ability to imagine geometric objects, Spatial Relation facilitates the understanding of relationships between objects, and Spatial Perception aids in recognizing the position and relationship of geometric elements. The resulting discriminant model had an eigenvalue of 13.967, indicating a strong discriminant power in separating student groups. Understanding these differentiating factors provides a foundation for designing effective learning strategies, such as the use of augmented reality (AR) applications and 3D modeling tools to enhance students’ comprehension of spatial figures. Furthermore, interventions using physical or virtual manipulatives can be tailored to students’ needs, assisting them in mastering the concept of flat-sided geometric shapes.
Keywords
References
Andriani, A., Dewi, I., & Manurung, N. (2022). Analysis of student’s mathematical spatial abilities in solving geometric problems. Proceedings of the 4th International Conference on Innovation in Education, Science and Culture, ICIESC 2022, 11 October 2022, Medan, Indonesia. https://doi.org/10.4108/eai.11-10-2022.2325388
Anwar, & Juandi, D. (2020). Studies of level visual thinking in geometry. 1470(1), 12095. https://doi.org/10.1088/1742-6596/1470/1/012095
Battista, M. T., Frazee, L. M., & Winer, M. L. (2018). Analyzing the Relation Between Spatial and Geometric Reasoning for Elementary and Middle School Students (pp. 195–228). https://doi.org/10.1007/978-3-319-98767-5_10
Benelli, G., Caporali, M., Rizzo, A., & Rubegni, E. (2001). Design concepts for learning spatial relationships. 22–30. https://doi.org/10.1145/501516.501522
Budiarto, M. T., Khabibah, S., & Firdaus, A. M. (2020). Misconception Of Junior High School Students On Two-Dimentional Figure Materials. Journal of Database Management, 8(1), 1–8. https://doi.org/10.26858/JDS.V8I1.13316
Chen, Y. C., Yang, F. Y., & Chang, C.-C. (2020). Conceptualizing spatial abilities and their relation to science learning from a cognitive perspective. Journal of Baltic Science Education, 19(1), 50–63. https://doi.org/10.33225/JBSE/20.19.50
Cui, X., & Guo, K. (2022). Supporting mathematics learning: a review of spatial abilities from research to practice. Current Opinion in Behavioral Sciences, 46, 101176. https://doi.org/10.1016/j.cobeha.2022.101176
Dick, A. O. (1976). 7 – Spatial Abilities (pp. 225–268). https://doi.org/10.1016/B978-0-12-746302-5.50014-1
Fiantika, F. R., Maknun, C. L., Budayasa, I. K., & Lukito, A. (2018). Analysis of students’ spatial thinking in geometry: 3D object into 2D representation. Journal of Physics: Conference Series, 1013(1). https://doi.org/10.1088/1742-6596/1013/1/012140
Girma, D. D. (2015). Students’ Learning Experiences When Using a Dynamic Geometry Software.
Gómez-Tone, H. C., Martín-Gutiérrez, J., Bustamante-Escapa, J., & Bustamante-Escapa, P. (2021). Spatial Skills and Perceptions of Space: Representing 2D Drawings as 3D Drawings inside Immersive Virtual Reality. Applied Sciences, 11(4), 1475. https://doi.org/10.3390/APP11041475
Handayani, R. (2023). Analisis kemampuan spasial visualization siswa sekolah dasar dalam pemecahan masalah geometri. Didaktik: Jurnal Ilmiah PGSD STKIP Subang, 9(1), 717–725. https://doi.org/10.36989/didaktik.v9i1.663
Hazen, N. (1983). Spatial Orientation: A Comparative Approach (pp. 3–37). https://doi.org/10.1007/978-1-4615-9325-6_1
Hidayat, S., Yanti, Y., & Imswatama, A. (2022). Analisis Kesulitan Siswa Dalam Memecahkan Masalah Dan Kemampuan Pemahaman Konsep Bangun Ruang Sisi Datar Pada Pembelajaran Jarak Jauh. Jurnal PEKA (Pendidikan Matematika), 6(1), 20–28. https://doi.org/10.37150/jp.v6i1.1683
Hodgkiss, A. (2019). The role of spatial cognition in children’s science learning.
Judd, N., & Klingberg, T. (2021). Training spatial cognition enhances mathematical learning in a randomized study of 17,000 children. Nature Human Behaviour, 5(11), 1548–1554. https://doi.org/10.1038/S41562-021-01118-4
Juliana, A., Nurjanah, & Usdiyana, D. (2022). The learning obstacles in solving geometry problems based on spatial ability in term of Van Hiele level. Nucleation and Atmospheric Aerosols. https://doi.org/10.1063/5.0117208
Kim, J. H. (2019). Multicollinearity and misleading statistical results. Korean Journal of Anesthesiology, 72(6), 558–569. https://doi.org/10.4097/KJA.19087
Koustriava, E., & Papadopoulos, K. (2010). Mental Rotation Ability of Individuals with Visual Impairments. Journal of Visual Impairment & Blindness, 104(9), 570–575. https://doi.org/10.1177/0145482X1010400910
Kurnia, A. N., & Hidayati, N. (2022). Analisis kemampuan berpikir geometri berdasarkan tahap berpikir van hiele pada pembelajaran matematika siswa smp. EduMatSains : Jurnal Pendidikan, Matematika Dan Sains, 6(2), 419–430. https://doi.org/10.33541/edumatsains.v6i2.3618
Kusnadi, D., & Barumbun, M. (2023). Analisis kemampuan spasial siswa melalui teori belajar van hiele pada pembelajaran matematika di sekolah dasar. Jurnal Mathematic Paedagogic, 7(2), 146–157. https://doi.org/10.36294/jmp.v7i2.3100
Liu, Q.-T., Ma, J., Yu, S., & Wu, L. (2022). Geometry Wall: An Embodied Gesture-based Game for Supporting Spatial Ability. 258–263. https://doi.org/10.1109/TALE54877.2022.00050
Lutfi, M. K., Cahya Mulyaning, E., & Annisa Kusumastuti, F. (2024). Analysis of Students’ Geometrical Thinking from Geometry Task Related to HOTS from PISA. KnE Social Sciences, 2024, 943–952. https://doi.org/10.18502/kss.v9i13.16020
Lutfi, M. K., & Jupri, A. (2020). Analysis of junior high school students’ spatial ability based on Van Hiele’s level of geometrical thinking for the topic of triangle similarity. Journal of Physics: Conference Series, 1521(3). https://doi.org/10.1088/1742-6596/1521/3/032026
Lutfi, M. K., & Kusumastuti, F. A. (2024). Integrasi Augmented Reality berbantuan Geogebra sebagai Media Pembelajaran Interaktif dalam Pembelajaran Materi Bangun Ruang. Social, Humanities, and Educational Studies (SHES), 7(3).
Lutfi, M. K., Kusumastuti, F. A., Akib, I., & Rohmawati, A. (2023). Media E-Learning Bangun Ruang Sisi Datar: Kelayakan pada Pembelajaran Daring. Edu Komputika Journal, 9(2), 78–87. https://doi.org/10.15294/edukomputika.v9i2.54743
Ma’rifatin, S., Amin, S. M., & Siswono, T. Y. E. (2019). Students’ mathematical ability and spatial reasoning in solving geometric problem. 1157(4), 42062. https://doi.org/10.1088/1742-6596/1157/4/042062
Maier, P. H. (1991). Spatial Geometry and Spatial Ability - How to Make Solid Geometry Solid. 69–81. http://webdoc.sub.gwdg.de/ebook/e/gdm/1996/maier.pdf
Manovich, L. (2011). What is visualisation. Visual Studies, 26(1), 36–49. https://doi.org/10.1080/1472586X.2011.548488
McCarthy, R. A. (1990). 4 – Spatial Perception (pp. 73–97). https://doi.org/10.1016/B978-0-12-481845-3.50007-2
Muhammad, N., Rehman, D. S., & Naeemullah, D. M. (2022). An Investigation into Spatial Ability in Geometry among Secondary School Students. Sir Syed Journal of Education & Social Research, 5(3), 22–28. https://doi.org/10.36902/sjesr-vol5-iss3-2022(22-28)
Ngirishi, H., & Bansilal, S. (2019). An exploration of high school learners’ understanding of geometric concepts. 77(1), 82–96. https://doi.org/10.33225/PEC/19.77.82
Noor Muhammad, Dr. Sajid Rehman, & Dr. Muhammad Naeemullah. (2022). An Investigation into Spatial Ability in Geometry among Secondary School Students. SJESR, 5(3), 22–28. https://doi.org/10.36902/sjesr-vol5-iss3-2022(22-28)
Novita, R., Putra, M., Rosayanti, E., & Fitriati, F. (2018). Design learning in mathematics education: Engaging early childhood students in geometrical activities to enhance geometry and spatial reasoning. 1088(1), 12016. https://doi.org/10.1088/1742-6596/1088/1/012016
Owens, K., & Clements, M. A. (Ken. (1998). Representations in Spatial Problem Solving in the Classroom. The Journal of Mathematical Behavior, 17(2), 197–218. https://doi.org/10.1016/S0364-0213(99)80059-7
Özçakir, B., & Cakiroglu, E. (2021). Fostering spatial abilities of middle school students through augmented reality: Spatial strategies. Education and Information Technologies, 1–34. https://doi.org/10.1007/S10639-021-10729-3
Palobo, M., & Juniati, D. (2022). The geometric thinking process of students in constructing the concept of area. International Journal of Research - Granthaalayah, 10(5), 75–87. https://doi.org/10.29121/granthaalayah.v10.i5.2022.4613
Prayitno, L. L., Purwanto, Subanji, S., Susiswo, S., & As’ari, A. R. (2020). Exploring Student’s Representation Process in Solving Ill-Structured Problems Geometry. 7(2), 183–202. https://doi.org/10.17275/PER.20.28.7.2
Ramesh, V. M. (2018). Spatial abilities in early childhood. 1–7. https://doi.org/10.1109/FIE.2018.8658655
Riastuti, N., Mardiyana, & Pramudya, I. (2017). Analysis of students geometry skills viewed from spatial intelligence. AIP Conference Proceedings, 1913. https://doi.org/10.1063/1.5016658
Saad, M. N., Muda, Z., Ashaari, N. S., Hamid, H. A., & Hasan, N. H. binti A. (2015). The spatial relation features for describing objects relationships within image. 126–131. https://doi.org/10.1109/ICEEI.2015.7352482
Sabil, H., Simanjuntak, S. M. O. U., Iriani, D., & Junita, R. (2024). Analysis of Students ’ Spatial Ability in Geometry Material. 13(3), 436–448.
Salsabilah, A. S., Nur Afifah, N. P., & Putri Herdiansyah, R. F. (2023). Analisis Kesulitan dalam Menyelesaikan Soal Luas Bangun Datar Gabungan Siswa Kelas IV SD. Journal on Education, 6(1), 2601–2608. https://doi.org/10.31004/joe.v6i1.3290
Sorby, S. A., Duffy, G. A., & Yoon, S. Y. (2022). Math Instrument Development for Examining the Relationship between Spatial and Mathematical Problem-Solving Skills. Education Sciences, 12(11), 828. https://doi.org/10.3390/educsci12110828
Stuchlík, A. (2003). Space and spatial orientation. Chekhoslovatskaia Fiziologiia, 52(1), 22–33.
Sumarni, S., & Prayitno, A. T. (2016). Kemampuan visual-spatial thinking dalam geometri ruang mahasiswa universitas kuningan. 2(2). https://doi.org/10.25134/JES-MAT.V2I2.349
Suprayo, T., Sugiman, S., Pujiastuti, E., Setiyani, S., & Oktoviani, V. (2023). Analisis kesulitan siswa smp dalam menyelesaikan soal bangun ruang sisi datar. Jurnal Lebesgue, 4(1), 352–363. https://doi.org/10.46306/lb.v4i1.203
Tadeo, D., & Yoo, J. (2022). Students’ Recognition of Concepts of Reflection and Refraction in Multiple Representational Formats. Jurnal Pendidikan Fisika, 10(2), 75–92. https://doi.org/10.26618/jpf.v10i2.7639
Yu, M., Cui, J., Wang, L., Gao, X., Cui, Z., & Zhou, X. (2022). Spatial processing rather than logical reasoning was found to be critical for mathematical problem-solving. Learning and Individual Differences, 100, 102230. https://doi.org/10.1016/j.lindif.2022.102230
Zakelj, A., & Klančar, A. (2022). The Role of Visual Representations in Geometry Learning. European Journal of Educational Research, 11(3), 1393–1411. https://doi.org/10.12973/eu-jer.11.3.1393
DOI: https://doi.org/10.20961/ijpte.v9i1.98297
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Muh. Khaedir Lutfi, Tatang Herman, Endang Cahya Mulyaning A

This work is licensed under a Creative Commons Attribution 4.0 International License.
|