Portable and Inexpensive Blue LED based UV-Vis Spectrophotometer with Smartphone Detector as a Chemistry Learning Innovation

Fa'ari Salsabiila, Laila Nur Rahmawati, Heny Muna Kholidah, Ari Syahidul Shidiq

Abstract


Effective study of chemistry requires access to complete and affordable laboratory equipment. Practical activities provide hands-on learning experiences and help students understand chemical concepts more easily. The spectrophotometer is a key instrument in chemistry labs, but its high cost and complex maintenance often make it unavailable in schools. This study aims to design and develop an inexpensive, simple, and portable UV-Vis spectrophotometer that offers quick analysis, making it accessible for high schools as a contextual chemistry learning tool. Experimental methods were employed in laboratories and chemistry classrooms, focusing on measuring solution content. The UV-Vis spectrophotometer was developed using LED light sources and smartphones as detectors and data processors. Integrating smartphones with the spectrophotometer for data reading represents a significant innovation. Testing revealed that the prototype demonstrated high accuracy and precision, with recovery values between 90-110% and precision test results below 2%, indicating good repeatability. The Limit of Detection (LOD) was found to be 0.43 ppm, and the Limit of Quantification (LOQ) was 20.99 ppm. Classroom implementation involved 23 students from a private school in Surakarta, using questionnaires and learning outcome tests. Results showed that the prototype effectively enhanced students' understanding of stoichiometry, with an 89.217% improvement. Additionally, 89.681% of students responded positively to using the prototype as a learning tool. This research demonstrates that a simple, portable, and affordable spectrophotometer can be developed as an interactive learning medium in high schools, significantly improving students' comprehension and engagement in chemistry. The prototype aligns with the principles of laboratory UV-Vis spectrophotometry and Lambert-Beer's law, where higher solution concentrations correspond to greater absorbance values.


Keywords


Blue LED; chemistry, Simple UV-Vis Spectrophotometer; Smartphone detector

Full Text:

PDF
rticle

References


Albert, D. R., Todt, M. A., & Davis, H. F. (2012). A low-cost quantitative absorption spectrophotometer. Journal of Chemical Education, 89(11), 1432–1435. https://doi.org/10.1021/ed200829d

Arifah, H. A. (2018). Perbedaan Kadar Total Protein Berdasarkan Frekuensi Penggunaan Kuvet Plastik. Doctoral dissertation, 53(9), 1689–1699.

Cokley, J. A., Jones, K. R., Delp, N. M., Rogers, K. R., & Davis, B. W. (2024). A 3D-Printable, Modular Absorption Spectrophotometer and Fluorimeter for use in Education. Journal of Chemical Education, 101(7), 2665–2671. https://doi.org/10.1021/acs.jchemed.3c01021

Diawati, C., Liliasari, Setiabudi, A., & Buchari. (2017). Students’ construction of a simple steam distillation apparatus and development of creative thinking skills: A project-based learning. AIP Conference Proceedings, 1848. https://doi.org/10.1063/1.4983934

Grasse, E. K., Torcasio, M. H., & Smith, A. W. (2016). Teaching UV-Vis Spectroscopy with a 3D-Printable Smartphone Spectrophotometer. Journal of Chemical Education, 93(1), 146–151. https://doi.org/10.1021/acs.jchemed.5b00654

Hoang, L. Q., Chi, H. B. L., Khanh, D. N. N., Vy, N. T. T., Hanh, P. X., Vu, T. N., Lam, H. T., & Phuong, N. T. K. (2021). Development of a low-cost colorimeter and its application for determination of environmental pollutants. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 249, 119212. https://doi.org/10.1016/j.saa.2020.119212

Hosker, B. S. (2018). Demonstrating Principles of Spectrophotometry by Constructing a Simple, Low-Cost, Functional Spectrophotometer Utilizing the Light Sensor on a Smartphone. Journal of Chemical Education, 95(1), 178–181. https://doi.org/10.1021/acs.jchemed.7b00548

Jawad, D. F., Farida, I., & Sukmawardani, Y. (2021). Pembuatan Kit Eksperimen Spektrofotometer Led Sederhana untuk Analisis Ion Logam Besi dalam Air. Gunung Djati Conference Series, 2(1), 1–14. file:///C:/Users/hp/Downloads/34-Article%20Text-19-1-10-20210204.pdf

Jefriyanto, W., Shein, M. M., Rajak, A., & Djamal, M. (2017). Rancang Bangun Kolorimeter Berbasis Mikrokontroler Arduino Uno. Prosiding SNIPS 2017, May, 87–94.

Knagge, K., & Raftery, D. (2002). Construction and Evaluation of a LEGO Spectrophotometer for Student Use. The Chemical Educator, 7(6), 371–375. https://doi.org/10.1007/s00897020615a

Kuntzleman, T., & Jacobson, E. (2016). Teaching Beer Law and Absorption Spectrophotometry With Smartphone. Journal of Chemical Education, 93(7), 1249–1252.

Kvittingen, E. V., Kvittingen, L., Sjursnes, B. J., & Verley, R. (2016). Simple and Inexpensive UV-Photometer Using LEDs as Both Light Source and Detector. Journal of Chemical Education, 93(10), 1814–1817. https://doi.org/10.1021/acs.jchemed.6b00156

Mariana, E., Cahyono, E., Rahayu, E. F., & Nurcahyo, B. (2018). Validasi Metode Penetapan Kuantitatif Metanol dalam Urin Menggunakan Gas Chromatography-Flame Ionization Detector. Indonesian Journal of Chemical Science, 7(3), 277–284.

Marsan, M., Lucidi, M., & Cincotti, G. (2018). LED-based spectrophotometry. Conference on Lasers and Electro-Optics (CLEO). https://doi.org/10.1109/CLEO.2018.8428013

Nandiyanto, A. B. D., Ragadhita, R., Abdullah, A. G., Triawan, F., Sunnardianto, G. K., & Aziz, M. (2019). Techno-economic feasibility study of low-cost and portable home-made spectrophotometer for analyzing solution concentration. Journal of Engineering Science and Technology, 14(2), 599–609.

Nandiyanto, A. B. D., Sofiani, D., Permatasari, N., Sucahya, T. N., Wiryani, A. S., Purnamasari, A., Rusli, A., & Prima, E. C. (2016). Photodecomposition profile of organic material during the partial solar eclipse of 9 March 2016 and its correlation with organic material concentration and photocatalyst amount. Indonesian Journal of Science and Technology, 1(2), 132–155. https://doi.org/10.17509/ijost.v1i2.3728

Nandiyanto, A. B. D., Zaen, R., Oktiani, R., Abdullah, A. G., & Riza, L. S. (2018). A simple, rapid analysis, portable, low-cost, and Arduino-based spectrophotometer with white LED as a light source for analyzing solution concentration. Telkomnika (Telecommunication Computing Electronics and Control), 16(2), 580–585. https://doi.org/10.12928/TELKOMNIKA.v16i2.7159

Ngibad, K. (2019). Determination of ammonium concentration in ngelom river water. Journal of Medical Laboratory Science Technology, 2(1), 37–42. https://doi.org/10.21070/medicra.v2i1.2071

Nurrahmawati, A., Nauval, F., & Munir, M. M. (2022). Desain Dan Pengembangan Spektrofotometer Cahaya Tampak Untuk Menentukan Absorbansi Maksimum Dari Pewarna Makanan Dan Klorofil a Daun Bayam. Prosiding Seminar Nasional Fisika (E-JOURNAL), 10(2), 63–70.

O’Donoghue, J. (2019). Simplified Low-Cost Colorimetry for Education and Public Engagement. Journal of Chemical Education, 96(6), 1136–1142. https://doi.org/10.1021/acs.jchemed.9b00301

Romadhani, H. (2017). Validasi Metode Penetapan Metformin dengan Spektrofotometri. Universitas Muhammadiyah Purwokerto, 6.

Sari, S., & Hidayat, R. Y. (2017). Pengembangan Keterampilan Berpikir Kreatif Siswa Pada Praktikum Jenis-Jenis Koloid: Pendekatan Sainstifik. JTK (Jurnal Tadris Kimiya), 1(1), 32–37. https://doi.org/10.15575/jta.v1i1.1155

Sasongko, A. (2020). Peningkatan Kualitas Pembelajaran Kimia melalui Praktikum Titrasi di SMA Negeri 5 Balikpapan. Cendekia: Jurnal Pengabdian Masyarakat, 2(2), 76. https://doi.org/10.32503/cendekia.v2i2.891

Scheeline, A. (2010). Teaching, learning, and using spectroscopy with commercial, off-the-shelf technology. Applied Spectroscopy, 64(9), 1–13. https://doi.org/10.1366/000370210792434378

Setyawan, B. A., & Ngadiyono, Y. (2022). Analisis Pengaruh Tingkat Kelembaban Filamen PLA Terhadap Nilai Kekuatan Mekanik Hasil Cetak 3D Printing. Jurnal Dinamika Vokasional Teknik Mesin, 7(1), 1–11. https://doi.org/10.21831/dinamika.v7i1.48259

Shidiq, A. S., Permanasari, A., & Hernani. (2020a). Chemistry Teacher’s Perception toward STEM Learning. ACM International Conference Proceeding Series, June, 40–43. https://doi.org/10.1145/3392305.3396901

Shidiq, A. S., Permanasari, A., & Hernani. (2020b). Pre-Service and In-Service Chemistry Teachers’ Views on Teaching Spectrometry in Senior High School. Journal of Engineering Science and Technology Special Issue on AASEC2019, AASEC(2019), 80.

Shidiq, A. S., Permanasari, A., & Hernani. (2020c). Simple, Portable, and Inexpensive Spectrophotometers for High Schools Lab Activity. 438(Aes 2019), 150–154. https://doi.org/10.2991/assehr.k.200513.034

Shidiq, A. S., Permanasari, A., Hernani, & Hendayana, S. (2021). The use of simple spectrophotometer in STEM education: A bibliometric analysis. Moroccan Journal of Chemistry, 9(2), 290–300. https://doi.org/10.48317/IMIST.PRSM/morjchem-v9i2.27581

Shidiq, A. S., Permanasari, A., Hernani, & Hendayana, S. (2022). Contemporary Hybrid Laboratory Pedagogy: Construction of a Simple Spectrophotometer with STEM Project-Based Learning to Introduce Systems Thinking Skills. Asia Pacific Journal of Educators and Education, 37(2), 107–146.

Sölvason, G. Ó., & Foley, J. T. (2015). Low-cost Spectrometer for Icelandic Chemistry Education. Procedia CIRP, 34, 156–161. https://doi.org/10.1016/j.procir.2015.07.072

Soranut, K., Wanglok, D., Kanji, A., & Kei, E. (2016). Design Of A Hand-Made Light Absorbance Measurement Device For Chemical Education. International Journal of Innovative Computing, Information and Control, 12, 1397–1410.

Su, C. H., & Cheng, T. W. (2019). A sustainability innovation experiential learning model for virtual reality chemistry laboratory: An empirical study with PLS-SEM and IPMA. Sustainability (Switzerland), 11(4). https://doi.org/10.3390/su11041027

Syahriana, Y., Desnita, R., & Luliana, S. (2019). Verifikasi metode analisis larutan alpha arbutin menggunakan Spektrofotometer UV-Vis Shimadzu UV-2450. Jurnal Untan, 4(1), 1–7.

Vanderveen, J. R., Martin, B., & Ooms, K. J. (2013b). Developing tools for undergraduate spectroscopy: An inexpensive visible light spectrometer. Journal of Chemical Education, 90(7), 894–899. https://doi.org/10.1021/ed300396x

Yeh, T. S., & Tseng, S. S. (2006). A low cost LED based spectrometer. Journal of the Chinese Chemical Society, 53(5), 1067–1072. https://doi.org/10.1002/jccs.200600142

Yohan, Y. (2018). Pembuatan Spektrofotometri Visibel 470 nm Menggunakan Arduino Uno R3. Jurnal Ilmiah Teknik Kimia, 2(1). https://doi.org/10.32493/jitk.v2i1.1085

Yohan, Y., Astuti, F., & Wicaksana, A. (2018). Pembuatan Spektrofotometer Edukasi Untuk Analisis Senyawa Pewarna Makanan. Chimica et Natura Acta, 6(3), 111. https://doi.org/10.24198/cna.v6.n3.19099

Zammiluni, Z., Ulianas, A., & Mawardi, M. (2018). Development of Guided Inquiry Based Work Sheet with Class and Laboratory Activity on Chemical Bonding Topic in Senior High School. International Journal of Chemistry Education Research, 2, 60–66. https://doi.org/10.20885/ijcer.vol2.iss2.art1




DOI: https://doi.org/10.20961/ijpte.v7i2.87950

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Fa'ari Salsabiila

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


  

International Journal of Pedagogy and Teacher Education

Print ISSN: 2597-7792
Online ISSN: 2549-8525
Website: https://jurnal.uns.ac.id/ijpte/index
Email: ijpte@mail.uns.ac.id
Published by: Faculty of Teacher Training and Education, Universitas Sebelas Maret
Ir. Sutami Street, No. 36A, Surakarta, Jawa Tengah Indonesia