Pirolisis Kilat Spirulina platensis dengan Katalis Ni/Al-SBA-15

Ade Putri Wahyuni, RR Dirgarini Julia Nurlianti Subagyono, Rahmat Gunawan, Veliyana Londong Allo, Maykel Manawan

Abstract

Studi ini mempelajari aktivitas katalis Ni/Al-SBA-15 dalam pirolisis kilat mikroalga Spirulina platensis dan perannya pada komposisi kimia produk yang dihasilkan. Katalis Ni/Al-SBA-15 yang disintesis dengan metode ultrasonic-assisted sol-gel memiliki luas permukaan 522,54 m²/g, diameter pori 6,6 nm, dan volume pori 0,86 cm³/g. Analisis Fourier transform infrared (FTIR) katalis mengidentifikasi gugus siloksan, silanol, dan hidroksil, sementara analisis low-angle dan wide-angle X-ray diffraction (XRD) menunjukkan puncak difraksi khas Al-SBA-15 dan NiO. Pirolisis tanpa katalis Ni/Al-SBA-15 menghasilkan produk turunan karbohidrat (10,7%), lipid (53,8%), protein (6,3%), dan klorofil (6,2%). Setelah inkorporasi katalis Ni/Al-SBA-15, produk turunan karbohidrat meningkat menjadi 35,2%, protein menjadi 10,9%, klorofil menjadi 10,7%, namun produk turunan lipid menurun menjadi 15,5%. Hasil ini menunjukan aktivitas katalis dalam meningkatkan konversi senyawa penyusun utama mikroalga, khususnya memecah lipid menjadi senyawa dengan berat molekul lebih kecil. Hal ini mengindikasikan bahwa metode sintesis katalis yang digunakan dapat menghasilkan material yang memiliki distribusi situs aktif yang relatif homogen dan aktivitas katalitik pada pirolisis mikroalga Spirulina platensis.

Flash Pyrolysis of Spirulina platensis with Ni/Al-SBA-15 CatalystThis study investigates the activity of Ni/Al-SBA-15 catalyst in flash pyrolysis of microalgae Spirulina platensis and its role in the chemical composition of the resulting products. The Ni/Al-SBA-15 catalyst synthesized by the ultrasonic-assisted sol-gel method had a surface area of 522.54 m²/g, pore diameter of 6.6 nm, and pore volume of 0.86 cm³/g. Fourier transform infrared (FTIR) analysis of the catalyst identified siloxane, silanol, and hydroxyl groups; meanwhile, low and wide-angle X-ray diffraction (XRD) analysis showed typical diffraction peaks of Al-SBA-15 and NiO. Pyrolysis without Ni/Al-SBA-15 catalyst produced carbohydrate-derived products (10.7%), lipids (53.8%), proteins (6.3%), and chlorophyll (6.2%). After incorporating Ni/Al-SBA-15 catalyst, carbohydrate-derived products increased to 35.2%, protein to 10.9%, and chlorophyll to 10.7%, but lipid-derived products decreased to 15.5%. These results showed the activity of the catalyst in increasing the conversion of the main constituent compounds of microalgae, especially breaking down lipids into smaller molecular weight compounds. This finding indicated that the catalyst synthesis method produced materials with a relatively homogeneous distribution of active sites and catalytic activity in the pyrolysis of microalgae Spirulina platensis.

Keywords

catalyst; Ni/Al-SBA-15; pyrolysis; Spirulina platensis; ultrasonic-assisted sol-gel

Full Text:

PDF

References

Adha, D.N., 2023. Studi Kinetika Pirolisis Serbuk Kayu Ulin (Eusideroxylon zwageri) dan Serbuk Kayu Meranti (Shorea spp) dengan Katalis Ni/SBA-15 Menggunakan Analisis Termogravimetri. Skripsi. Universitas Mulawarman, Samarinda.

Anam, C., Agustini, T.W., and Romadhon, 2014. Pengaruh Pelarut yang Berbeda pada Ekstraksi Spirulina Platensis Serbuk sebagai Antioksidan dengan Metode Soxhletasi. Jurnal Pengolahan dan Bioteknologi, 3.

Aryono, B., Zainuddin, M., and Fithria, R.F., 2022. Pertumbuhan, Kadar Pigmen dan Aktivitas Antioksidan Spirulina Platensis pada Kultur dengan Perbedaan Warna Pencahayaan Leds. Journal of Marine Research, 11, 805–818. https://doi.org/10.14710/jmr.v11i4.35310.

Chareonpanich, M., Nanta-ngern, A., and Limtrakul, J., 2007. Short-Period Synthesis of Ordered Mesoporous Silica SBA-15 Using Ultrasonic Technique. Materials Letters, 61, 5153–5156. https://doi.org/10.1016/j.matlet.2007.04.019.

Febriyanti, F., Fadila, N., Sanjaya, A.S., Bindar, Y., and Irawan, A., 2019. Pemanfaatan Limbah Tandan Kosong Kelapa Sawit menjadi Bio-Char, Bio-Oil dan Gas dengan Metode Pirolisis. Jurnal Chemurgy, 3, 12. https://doi.org/10.30872/cmg.v3i2.3578.

Fitriah, N.A., 2023. Pirolisis Serbuk Kayu Meranti (Shorea spp) dengan Katalis Ni/SBA-15 Menggunakan Instrumen Pyrolysis Gas-Chromatography-Mass Spectrometry (Py-GC/MS). Skripsi. Universitas Mulawarman, Samarinda.

Iftitah, E.D., Muchalal, Trisunaryanti, W., and Armunanto, R., 2013. Karakterisasi dan Aktivitas Katalitik Berbagai Variasi Komposisi Katalis Ni dan ZnBr2 dalam γ-Al2O3 untuk Isomerisasi dan Hidrogenasi (R)-(+)-Sitronelal. Jurnal MIPA, 36, 60–69.

Imam, T., and Capareda, S., 2012. Characterization of Bio-Oil, Syn-Gas and Bio-Char from Switchgrass Pyrolysis at Various Temperatures. Journal of Analytical and Applied Pyrolysis, 93, 170–177. https://doi.org/10.1016/j.jaap.2011.11.010.

Ismayati, M., Pramasari, D. A., Dwianto, W., Adi, D. S., Muliawati, N. T., Damayanti, R., Pramesti, N. A. P., Ramadhan, S., Hardianto, A., & Kamaluddin, N. N. 2023. A Study of Chemical Constituents in Platinum Fast-Grown Teak Wood (Tectona grandis) with Age Differences Using Py-GCMS Coupled with Interdependence Multivariate Analysis. HAYATI Journal of Biosciences, 30, 380–391. https://doi.org/10.4308/hjb.30.2.380-391.

Jamilatun, S., Kurniawan, T.A., Purnama, A.C., and Putra, I.M., 2021. Pyrolysis of Spirulina Platensis Residue: Effect of Temperature without and with Fe-Oxide Catalyst. CHEMICA: Jurnal Teknik Kimia, 7, 127. https://doi.org/10.26555/chemica.v7i2.18077.

Leão, M.B., Bordin, J.R., and de Matos, C.F., 2023. Specific Surface Area Versus Adsorptive Capacity: An Application View of 3D Graphene-Based Materials for the Removal of Emerging Water Pollutants. Water, Air, & Soil Pollution, 234, 136. https://doi.org/10.1007/s11270-023-06146-6.

Li, F., Srivatsa, S.C., and Bhattacharya, S., 2019. A Review on Catalytic Pyrolysis of Microalgae to High-Quality Bio-Oil with Low Oxygeneous and Nitrogenous Compounds. Renewable and Sustainable Energy Reviews, 108, 481–497. https://doi.org/10.1016/j.rser.2019.03.026.

Li, L., Rowbotham, J.S., Christopher Greenwell, H., and Dyer, P.W., 2013. An Introduction to Pyrolysis and Catalytic Pyrolysis: Versatile Techniques for Biomass Conversion, in: New and Future Developments in Catalysis. Elsevier, pp. 173–208. https://doi.org/10.1016/B978-0-444-53878-9.00009-6.

Marsella, Y., Subagyono, R.R.J.N., and Gunawan, R., 2023. Pirolisis Serbuk Kayu Meranti (Shorea spp) dengan Katalis Ni/SBA-15 menggunakan instrumen Pyrolysis Gas-Chromatography-Mass Spectrometry (Py-GC/MS). Prosiding Seminar Nasional Kimia, Universitas Mulawarman, Samarinda, pp. 125–131.

Nawawi, D.S., Carolina, A., Saskia, T., Darmawan, D., Gusvina, S.L., Wistara, N.J., Sari, R.K., and Syafii, W., 2018. Karakteristik Kimia Biomassa Untuk Energi. Ilmu Teknologi Kayu Tropis, 16.

Permadi, A., Suhendra, Ahda, M., Zufar, A.F., Padya, S.A., Anugrah, N., Hadi, S., and Suharto, T.E., 2022. Perbandingan Kandungan Klorofil dan Antioksidan Spirulina dengan Beberapa Jenis Sayuran. In: Seminar Nasional Penelitian LPPM UMJ, 26 October 2022, Universitas Muhammadiyah Jakarta, Yogyakarta, pp. 1–7.

Prestianggi, Y., Maylisa, N., N Subagyono, R.D.J., Sitorus, S., and Daniel, 2019. Adsorption of Toluene and Xylene from Aqueous Solution on SBA-15 from Rice Husk. Journal of Physics: Conference Series, 1277, 24 October 2018, Novotel Balikpapan Hotel, Balikpapan, Indonesia, p. 012002. https://doi.org/10.1088/1742-6596/1277/1/012002.

Putri, A.Z., and Ratnawulan, 2019. Analisis Teoristik Nanopartikel Zirkonium Dioksida (ZrO2). Pillar of Physics, 12, 70–76.

Rachmawati, O., 2023. Studi Kinetika Pirolisis Sabut Kelapa dan Ampas Tebu dengan Katalis Ni/SBA-15 Menggunakan Analisis Termogravimetri. Skripsi. Universitas Mulawarman, Samarinda.

Rakngam, I., Osakoo, N., Wittayakun, J., Chanlek, N., Pengsawang, A., Sosa, N., Butburee, T., Faungnawakij, K., and Khemthong, P., 2021. Properties of Mesoporous Al-SBA-15 from One-Pot Hydrothermal Synthesis with Different Aluminium Precursors and Catalytic Performances in Xylose Conversion to Furfural. Microporous and Mesoporous Materials, 317, 110999. https://doi.org/10.1016/j.micromeso.2021.110999.

Sarah, S., Subagyono, R.R.D.J.N., Allo, V.L., and Gunawan, R., 2024. Synthesis and Characterization of Mesoporous Silica SBA-15 Prepared by the Ultrasonic Assisted-Sol Gel Method. In: AIP Conference Proceedings, The 4th International Conference on Mathematics and Sciences. ICMSC, 10–11 October 2022, Samarinda, Indonesia, p. 030003. https://doi.org/10.1063/5.0204746.

Sinulingga, F., Trilaksani, W., and Setyaningsih, I., 2024. Karakteristik Fisikokimia Tablet Berbasis Mikrokapsul Minyak Mata Tuna dan Spirulina. Jurnal Pengolahan Hasil Perikanan Indonesia, 27, 1–15. https://doi.org/10.17844/jphpi.v27i1.49473.

Subagyono, D.J.N., Liang, Z., Knowles, G.P., and Chaffee, A.L., 2011. Amine Modified Mesocellular Siliceous Foam (MCF) as a Sorbent for CO2. Chemical Engineering Research and Design, 89, 1647–1657. https://doi.org/10.1016/j.cherd.2011.02.019.

Subagyono, D.J.N., Marshall, M., Fei, Y., Jackson, W.R., and Chaffee, A.L., 2015. Thermo-Chemical Reactions of Algae, Grape Marc and Wood Chips Using a Semi-Continuous/Flow-through System. Fuel, 158, 927–936. https://doi.org/10.1016/j.fuel.2015.06.026.

Subagyono, R.R.D.J.N., Marshall, M., Jackson, W.R., Auxilio, A.R., Fei, Y., and Chaffee, A.L., 2020. Upgrading Microalgal Biocrude Using NiMo/Al-SBA-15 as a Catalyst. Energy & Fuels, 34, 4618–4631. https://doi.org/10.1021/acs.energyfuels.9b04171.

Subagyono, R.R.D.J.N., Putri, S.A., Manawan, M., Mollah, M., Nugroho, R.A., and Gunawan, R., 2023. Catalytic Pyrolysis of the Green Microalgae Botryococcus Braunii over Ni/SBA-15 Prepared by the Ultrasonic-Assisted Sol-Gel Method. ACS Omega, 8, 8582–8595. https://doi.org/10.1021/acsomega.2c07748.

Subagyono, R.R.D.J.N., Qi, Y., Jackson, W.R., and Chaffee, A.L., 2016. Pyrolysis-GC/MS Analysis of Biomass and the Bio-Oils Produced from CO/H2O Reactions. Journal of Analytical and Applied Pyrolysis, 120, 154–164. https://doi.org/10.1016/j.jaap.2016.05.001.

Trisunaryanti, W., Suarsih, E., Triyono, T., and Falah, I.I., 2019. Well-Dispersed Nickel Nanoparticles on the External and Internal Surfaces of SBA-15 for Hydrocracking of Pyrolyzed α-Cellulose. RSC Advances, 9, 1230–1237. https://doi.org/10.1039/C8RA09034C.

Refbacks

  • There are currently no refbacks.