Penggunaan Katalis Nikel Fosfida Berpenyangga Zeolit Alam untuk Optimasi Reaksi Esterifikasi Distilat Asam Lemak Sawit menjadi Biodiesel menggunakan Responce Surface Methodology-Box Behnken Design
Abstract
Biodiesel merupakan biofuel generasi pertama, bersifat terbarukan, dan ramah lingkungan yang dapat menggantikan bahan bakar diesel. Bahan bakunya dapat berupa distilat asam lemak sawit (DALMS) yang merupakan produk samping pengolahan minyak sawit mentah, memiliki kadar asam lemak tinggi dan bersifat nonedible. Sintesis biodiesel dari DALMS dilakukan melalui reaksi esterifikasi menggunakan katalis nikel fosfida berpenyangga zeolit alam (NiP/Za). Tujuan penelitian ini adalah menentukan karakteristik katalis dan kondisi optimum esterifkasi DALMS menjadi biodiesel menggunakan Response Surface Methodology-Box Behnken Design (RSM-BBD). Zeolit alam diberi perlakuan desilikasi dan aktivasi serta katalis disintesis dengan impregnasi basah. Esterifikasi dilakukan pada waktu 2 – 4 jam, suhu 45 – 65 ℃, konsentrasi katalis 5% – 15% (b/b). Hasil karakterisasi menunjukkan bahwa katalis memiliki fase kristal Ni2P dengan munculnya puncak pada 2θ: 40,5; 44,5; dan 47,21o, ukuran kristal 28,64 nm, luas permukaan 35,577 m2/g, volume pori 0,094 cc/g, dan diameter pori 3,8306 nm. Parameter waktu dan suhu berpengaruh signifikan terhadap konversi. Kondisi optimum esterifikasi DALMS menjadi biodiesel didapatkan pada suhu 45 ℃, waktu 4 jam, dan konsentrasi katalis 6% dengan konversi 4,67%.
The Use of Natural Zeolite-Supported Nickel Phosphide Catalyst to Optimize the Esterification Reaction of Palm Fatty Acid Distillate into Biodiesel using Response Surface Methodology-Box Behnken Design. Biodiesel is a renewable and environmentally friendly first-generation biofuel that can replace diesel fuel. The raw material can be Palm fatty acid distillate (PFAD), a by-product of crude palm oil processing, which has a high fatty acid content and is nonedible. An activated natural zeolite-supported nickel phosphide catalyst (NiP/NZ) makes the esterification reaction easier, which turns PFAD into biodiesel. This study aimed to determine the characteristics of the catalyst and the optimum conditions for the esterification of PFAD into biodiesel using the Response Surface Methodology-Box Behnken Design (RSM-BBD). Natural zeolite was desilicated and activated. Then, the catalyst was synthesized by wet impregnation. Esterification was performed for 2 ‒ 4 h at a temperature of 45 – 65 ℃ and a catalyst dosage of 5% – 15% (w/w). The tests revealed that the catalyst consists of Ni2P crystals, exhibiting diffraction peaks at 2θ 40.5, 44.5, and 47.21°. The crystals are 28.64 nm in size, and the catalyst has a surface area of 35.577 m2/g, a pore volume of 0.094 cc/g, and a pore diameter of 3.8306 nm. Time and temperature parameters significantly affected the conversion of PFAD. The optimum condition for PFAD esterification into biodiesel was obtained at 45 ℃, 4 h, and 6% catalyst concentration with 4.67% conversion
Keywords
Full Text:
PDFReferences
Adenuga, A.A., Oyekunle, J.A.O., and Idowu, O.O., 2021. Pathway to Reduce Free Fatty Acid Formation in Calophyllum Inophyllum Kernel Oil: A Renewable Feedstock For Biodiesel Production. Journal of Cleaner Production, 316,128222. http://dx.doi.org/10.1016/j.jclepro.2021.128222.
Akinfalabi, S.I., Rashid, U., Nehdi, I.A., Choong, T.S.Y., Sbihi, H.M., and Gewik, M.M., 2020. Optimization and Blends Study of Heterogeneous Acid Catalyst-Assisted Esterification of Palm Oil Industry By-Product for Biodiesel Production. Royal Society Open Science, 7(1), 1‒17. http://dx.doi.org/10.1098/rsos.191592.
Akinfalabi, S.I., Rashid, U., Yunus, R., and Taufiq-Yap, Y.H., 2017. Synthesis of Biodiesel from Palm Fatty Acid Distillate Using Sulfonated Palm Seed Cake Catalyst. Renewable Energy, 111, 611–619. https://doi.org/10.1016/j.renene.2017.04.056.
Anggraini, S.D., 2018. Rekayasa Produksi Biodiesel Dari Minyak Kemiri Sunan (Reutialis Trisperma Oil) Sebagai Alternatif Bahan Bakar Mesin Diesel. Jurnal Ilmiah Teknik dan Manajemen Industri, 2(1), 1–13. http://dx.doi.org/10.30737/jatiunik.v2i1.272.
Aziz, I., Adhani, L., Maulana, M.I., Marwono, M.A., Dwiatmoko, A.A., and Nurbayti, S., 2022. Conversion of Nyamplung Oil into Green Diesel through Catalytic Deoxygenation using NiAg/ZH Catalyst. Jurnal Kimia Valensi, 8(2), 240–250. https://doi.org/10.15408/jkv.v8i2.25943.
Aziz, I., Saridewi, N., Febriyani, F., and Adhani, L., 2023a. Deoksigenasi Katalitik Metil Ester Asam Lemak Menjadi Biohidrokarbon Menggunakan Katalis Cr2O3/Zeolit. ALCHEMY Jurnal Penelitian Kimia, 19(2), 170‒176. http://dx.doi.org/10.20961/alchemy.19.2.72521.170-176.
Aziz, I., Sugita, P., Darmawan, N., and Adep, A.A., 2023b. Effect of desilication process on natural zeolite as Ni catalyst support on hydrodeoxygenation of palm fatty acid distillate ( PFAD ) into green diesel. South African Journal of Chemical Engineering, 45(July), 328–338. https://doi.org/10.1016/j.sajce.2023.07.002.
Buasri, A., Lertnimit, S., Nisapruksachart, A., Khunkha, I., and Loryuenyong, V., 2023. Box-Behnken Design for Optimization on Esterification of Free Fatty Acids in Waste Cooking Oil Using Modified Smectite Clay Catalyst. ASEAN Journal of Chemical Engineering, 23(1), 40–51. http://dx.doi.org/10.22146/ajche.77009.
Dahdah, E., Estephane, J., Haydar, R., Youssef, Y., El Khoury, B., Gennequin, C., Aboukaïs, A., Abi-Aad, E., and Aouad, S., 2020. Biodiesel Production from Refined Sunflower Oil Over Ca–Mg–Al Catalysts: Effect of The Composition and The Thermal Treatment. Renewable Energy, 146, 1242–1248. https://doi.org/10.1016/j.renene.2019.06.171.
Deliy, I.V., Shamanaev, I.V., Gerasimov, E.Y., Pakharukova, V.P., Yakovlev, I.V., Lapina, O.B., Aleksandrov, P. V., and Bukhtiyarova, G.A., 2017. HDO of Methyl Palmitate Over Silica-Supported Ni Phosphides: Insight Into Ni/P Effect. Catalysts, 7(10), 22–25. http://dx.doi.org/10.3390/catal7100298.
Du, X., Liang, W., Hao, X., Zhou, K., Yang, H., Lei, X., Li, D., and Hu, C., 2021. The Effect of Support on Nickel Phosphide Catalysts for One-Pot Conversion of Jatropha Oil into High Grade Hydrocarbons. Catalysis Today, 367, 83–94. https://doi.org/10.1016/j.cattod.2020.06.089.
Esan, A.O., Olalere, O.A., Gan, C.Y., Smith, S.M., and Ganesan, S., 2021. Synthesis of Biodiesel from Waste Palm Fatty Acid Distillate (PFAD) and Dimethyl Carbonate (DMC) Via Taguchi Optimisation Method. Biomass and Bioenergy, 154, 106262. https://doi.org/10.1016/j.biombioe.2021.106262.
Guldhe, A., Moura, C.V.R., Singh, P., Rawat, I., Moura, E.M., Sharma, Y., and Bux, F., 2017. Conversion of Microalgal Lipids to Biodiesel Using Chromium-Aluminum Mixed Oxide as A Heterogeneous Solid Acid Catalyst. Renewable Energy, 105, 175–182. https://doi.org/10.1016/j.renene.2016.12.053.
Guo, C., Rao, K.T.V., Yuan, Z., He, Q.S., Rohani, S., and Xu, C., 2018. Hydrodeoxygenation of Fast Pyrolysis Oil with Novel Activated Carbon-Supported Nip and Cop Catalysts. Chemical Engineering Science, 178, 248–259. https://doi.org/10.1016/j.ces.2017.12.048.
He, Y., Lin, H., Dong, Y., Lia, B., Wang, L., Chu, S., Luo, M., and Liu, J., 2018. Zeolite Supported Fe/Ni Bimetallic Nanoparticles for Simultaneous Removal of Nitrate and Phosphate: Synergistic Effect and Mechanism. Chemical Engineering Journal, 347, 669–681. https://doi.org/10.1016/j.cej.2018.04.088.
Helmi, M., Tahvildari, K., Hemmati, A., Aberoomand azar, P., and Safekordi, A., 2021. Phosphomolybdic Acid/Graphene Oxide as Novel Green Catalyst Using for Biodiesel Production from Waste Cooking Oil Via Electrolysis Method: Optimization Using with Response Surface Methodology (RSM). Fuel, 287, 119528. https://doi.org/10.1016/j.fuel.2020.119528.
Hendrawati, H., Liandi, A.R., Solehah, M., Setyono, M.H., Aziz, I., and Siregar, Y.D.I., 2023. Pyrolysis of PP and HDPE from Plastic Packaging Waste into Liquid Hydrocarbons Using Natural Zeolite Lampung as A Catalyst. Case Studies Chemical Environmental Engineering, 7, 100290. https://doi.org/10.1016/j.cscee.2022.1002.
Hongloi, N., Prapainainar, P., and Prapainainar, C., 2022. Review of Green Diesel Production from Fatty Acid Deoxygenation Over Ni-Based Catalysts. Molecular Catalysis, 523, 111696. https://doi.org/10.1016/j.mcat.2021.111696.
Iryani, A., Masudi, A., Rozafia, A.I., Hartanto, D., Santoso, M., Nur, H., and Azami, M.S., 2020. Enhanced Removal Of Soluble and Insoluble Dyes Over Hierarchical Zeolites: Effect of Synthesis Condition. Inorganics, 8(9). https://doi.org/10.3390/inorganics8090052.
Joorasty, M., Hemmati, A., and Rahbar-Kelishami, A., 2021. NaOH/Clinoptilolite-Fe3O4 as A Novel Magnetic Catalyst for Producing Biodiesel from Amygdalus Scoparia Oil: Optimization and Kinetic Study. Fuel, 303, 121305. https://doi.org/10.1016/j.fuel.2021.121305.
Kapor, N.Z.A., Maniam, G.P., Rahim, M.H.A., and Yusoff, M.M., 2017. Palm Fatty Acid Distillate as A Potential Source for Biodiesel Production-A Review. Journal of Cleaner Production, 143, 1–9. http://dx.doi.org/10.1016/j.jclepro.2016.12.163.
Lopes. S.Q., Holanda, F.H., Jimenez, D.E.Q., do Nascimento, L.A.S., Oliveira, A.N., and Ferreira, I.M., 2021. Use of Oxone® as A Potential Catalyst in Biodiesel Production from Palm Fatty Acid Distillate (PFAD). Catalysis Letters, 152(4), 1009–1019. https://link.springer.com/article/10.1007/s10562-021-03698-2.
Maghfirah, A., Ilmi, M.M., Fajar, A.T.N., and Kadja, G.T.M., 2020. A Review on The Green Synthesis of Hierarchically Porous Zeolite. Materials Today Chemistry, 17, 100348. https://doi.org/10.1016/j.mtchem.2020.100348.
Mayawati T, Faradila A. 2023. Statistik Pertambangan Minyak dan Gas Bumi 2018-2022. Jakarta: Badan Pusat Statistik, 34. <https://www.bps.go.id/id/publication/2023/12/21/ba05428c434f522b805a4ed5/statistik-pertambangan-minyak-dan-gas-bumi-2018-2022.html>.
Noshadi, I., Amin, N.A.S., and Parnas, R.S., 2012. Continuous Production of Biodiesel from Waste Cooking Oil in A Reactive Distillation Column Catalyzed by Solid Heteropolyacid: Optimization Using Response Surface Methodology (RSM). Fuel, 94, 156–164. https://doi.org/10.1016/j.fuel.2011.10.018.
Peter, A.S., Alias, M.P., Iype, M.P., Jolly, J., Sankar, V., Babu, K.J., and Baby, D.K., 2021. Optimization of Biodiesel Production by Transesterification of Palm Oil and Evaluation of Biodiesel Quality. Materials Today Proceedings, 42(2), 1002–1007. https://doi.org/10.1016/j.matpr.2020.11.995.
Rahmani, F., Haghighi, M., and Amini, M., 2015. The Beneficial Utilization of Natural Zeolite in Preparation of Cr/Clinoptilolite Nanocatalyst Used in CO2-Oxidative Dehydrogenation of Ethane to Ethylene. Journal Industrial Engineering Chemistry, 31, 142–155. https://doi.org/10.1016/j.jiec.2015.06.018.
Ruatpuia, J.V.L., Halder, G., Vanlalchhandama, M., Lalsangpuii, F., Boddula, R., Al-Qahtani, N., Niju, S., Mathimani, T., and Rokhum, S.L., 2024. Jatropha curcas Oil A Potential Feedstock for Biodiesel Production: A Critical Review. Fuel, 370, 131829. https://doi.org/10.1016/j.fuel.2024.131829.
Sabarella, S., Komalasari, W.B., Wahyuningsih, S., Saida, M.D.N., Manurung, M., Sehusman, S., Supriyati, Y., Seran, K., Rinawati, R., 2022. Buletin Konsumsi Pangan Volume 13 Nomor 1 Tahun 2022. Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal Kementrian Pertanian Tahun 2022, Jakarta.
Sahabdheen, A.B. and Arivarasu, A., 2020. Synthesis and Characterization of Reusable Heteropoly Acid Nanoparticles for One Step Biodiesel Production from High Acid Value Waste Cooking Oil - Performance and Emission Studies. Materials Today Proceedings, 22(3), 383–392. https://doi.org/10.1016/j.matpr.2019.07.249.
Santoso, A., Kusumah, T.N., Sumari, S., Wijaya, A.R., Retnosari, R., Rachman, I.B., Marfuah, S., and Asrori, M.R., 2022. Synthesis of Biodiesel from Waste Cooking Oil Using Heterogeneous Catalyst Of Na2O/Γ-Al2O3 Assisted by Ultrasonic Wave. AIMS Energy, 10(5), 1059–1073. https://doi.org/10.3934/energy.2022049.
Soltani, S., Rashid, U., Yunus, R., and Taufiq-Yap, Y.H., 2016. Biodiesel Production in The Presence of Sulfonated Mesoporous ZnAl2O4 Catalyst Via Esterification Of Palm Fatty Acid Distillate (PFAD). Fuel, 178, 253–262. http://dx.doi.org/10.1016/j.fuel.2016.03.059.
Susanto, B.H., Nasikin, M., Sukirno, S., and Wiyo, A., 2014. Synthesis of Renewable Diesel Through Hydrodeoxygenation Using Pd/zeolite Catalysts. Procedia Chemistry, 9, 139–150. https://doi.org/10.1016/j.proche.2014.05.017.
Topal, M. and Topal E.I.A., 2020. Optimization of Tetracycline Removal with Chitosan Obtained from Mussel Shells Using RSM. Journal of Industrial Engineering Chemistry, 84, 315–321. https://doi.org/10.1016/j.jiec.2020.01.013.
Veza, I., Spraggon, M., Fattah, I.M.R., and Idris, M., 2023. Response Surface Methodology (RSM) for Optimizing Engine Performance and Emissions Fueled with Biofuel: Review of RSM for Sustainability Energy Transition. Results in Engineering, 18, 101213. https://doi.org/10.1016/j.rineng.2023.101213.
Refbacks
- There are currently no refbacks.