Screen-printed Carbon Electrode from Coconut Shell Activated Carbon Modified with Ferrocene for Cobalt Detection
Abstract
Keywords
Full Text:
PDFReferences
Abdullah, N.H., Inu, I., Razab, Abdul, M.K.A., Noor, A., Zauddin, M., Che, N.A., Rasat, M.S., Mat Amin, Mohamad Faiz Mohd Abdullah, W.N., and Wan Shukri, Nurasmat Mohd Halim, A.Z., 2018. Effect of Acidic and Alkaline Treatments to Methylene Blue Adsorption from Aqueous Solution by Coconut Shell Activated Carbon. International Journal of Current Research in Science, Engineering & Technology, 1, 319. https://doi.org/10.30967/ijcrset.1.S1.2018.319-324.
Azari, B.L.H., Wicaksono, T., Damayanti, J.F., and Azari, D.F.H., 2021. The Study of The Electrical Conductivity and Activation Energy on Conductive Polymer Materials. Computational And Experimental Research In Materials And Renewable Energy, 4, 71. https://doi.org/10.19184/cerimre.v4i2.28371.
Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, J.C.G., and Almeida, V.C., 2011. NaOH-Activated Carbon of High Surface Area Produced from Coconut Shell: Kinetics and Equilibrium Studies from the Methylene Blue Adsorption. Chemical Engineering Journal, 174, 117–125. https://doi.org/10.1016/j.cej.2011.08.058.
Cinti, S., Fiore, L., Massoud, R., Cortese, C., Moscone, D., Palleschi, G., and Arduini, F., 2018. Low-Cost and Reagent-Free Paper-Based Device to Detect Chloride Ions in Serum and Sweat. Talanta, 179, 186–192. https://doi.org/10.1016/j.talanta.2017.10.030.
Ferlazzo, A., Bressi, V., Espro, C., Iannazzo, D., Piperopoulos, E., and Neri, G., 2023. Electrochemical Determination of Nitrites and Sulfites by Using Waste-Derived Nanobiochar. Journal of Electroanalytical Chemistry, 928, 117071. https://doi.org/10.1016/j.jelechem.2022.117071.
Heliani, K.R., Rahmawati, F., and Wijayanta, A.T., 2024. Screen Printed Carbon Electrode from Coconut Shell Char for Lead Ions Detection. International Journal of Renewable Energy Development, 13, 19–30. https://doi.org/10.14710/ijred.2024.57679.
Hu, L., Zhou, X., Li, J., Bai, T., Tang, J., Zhou, T., and Cui, Q., 2018. Ferrocene/Graphene Modified Glassy Carbon Electrode for Chloromycetin Detection. International Journal of Electrochemical Science, 13, 396–409. https://doi.org/10.20964/2018.01.09.
Huang, L., Wang, S., Zhang, Y., Huang, X.H., Peng, J.J., and Yang, F., 2021. Preparation of a N-P Co-Doped Waste Cotton Fabric-Based Activated Carbon for Supercapacitor Electrodes. Xinxing Tan Cailiao/New Carbon Materials, 36, 1128–1137. https://doi.org/10.1016/S1872-5805(21)60054-9.
Kuan-Ching Lee, Mitchell Shyan Wei Lim, Zhong-Yun Hong, S.C.G.-T.P. and C.-M.H., 2021. Coconut Shell-Derived Activated Carbon for High-Performance. Energies, 14, 4546.
Ma, F., Li, X., Li, Y., Feng, Y., and Ye, B.-C., 2022. High current flux electrochemical sensor based on nickel-iron bimetal pyrolytic carbon material of paper waste pulp for clenbuterol detection. Talanta, 250, 123756. https://doi.org/10.1016/j.talanta.2022.123756.
Mopoung, S., and Dejang, N., 2021. Activated Carbon Preparation from Eucalyptus Wood Chips Using Continuous Carbonization-Steam Activation Process in a Batch Intermittent Rotary Kiln. Scientific Reports, 11, 13948. https://doi.org/10.1038/s41598-021-93249-x.
Mossfika, E., Syukri, S., and Aziz, H., 2020. Preparation of Activated Carbon from Tea Waste by NaOH Activation as A Supercapacitor Material. Journal of Aceh Physics Society, 9, 42–47. https://doi.org/10.24815/jacps.v9i2.15905.
Munir, M.A., Badri, K.H., Heng, L.Y., Inayatullah, A., Nurinda, E., Estiningsih, D., Fatmawati, A., Aprilia, V., and Syafitri, N., 2022. The Application of Polyurethane-LiClO4 to Modify Screen-Printed Electrodes Analyzing Histamine in Mackerel Using a Voltammetric Approach. ACS Omega, 7, 5982–5991. https://doi.org/10.1021/acsomega.1c06295.
Ndiaye, A.L., Delile, S., Brunet, J., Varenne, C., and Pauly, A., 2016. Electrochemical Sensors Based on Screen-Printed Electrodes: The Use of Phthalocyanine Derivatives for Application in VFA Detection. Biosensors, 6. https://doi.org/10.3390/bios6030046.
Rahmawati, F., Heliani, K.R., Wijayanta, A.T., Zainul, R., Wijaya, K., Miyazaki, T., and Miyawaki, J., 2023. Alkaline Leaching-Carbon from Sugarcane Solid Waste for Screen-Printed Carbon Electrode. Chemical Papers. https://doi.org/10.1007/s11696-023-02712-8.
Rahmawati, F., Yuliati, L., Alaih, I.S., and Putri, F.R., 2017. Carbon Rod of Zinc-Carbon Primary Battery Waste as a Substrate for CdS and TiO2 Photocatalyst Layer for Visible Light Driven Photocatalytic Hydrogen Production. Journal of Environmental Chemical Engineering, 5, 2251. https://doi.org/10.1016/j.jece.2017.04.032.
Ridassepri, A.F., Rahmawati, F., Heliani, K.R., Chairunnisa, Miyawaki, J., and Wijayanta, A.T., 2020. Activated Carbon from Bagasse and Its Application for Water Vapor Adsorption. Evergreen, 7, 409–416. https://doi.org/10.5109/4068621.
Shrestha, S., 2016. Chemical, Structural and Elemental Characterization of Biosorbents Using FE-SEM, SEM-EDX, XRD/XRPD and ATR-FTIR Techniques. Journal of Chemical Engineering & Process Technology, 7. https://doi.org/10.4172/2157-7048.1000295.
Song, X., Gunawan, P., Jiang, R., Leong, S.S.J., Wang, K., and Xu, R., 2011. Surface Activated Carbon Nanospheres for Fast Adsorption of Silver Ions from Aqueous Solutions. Journal of Hazardous Materials, 194, 162–168. https://doi.org/10.1016/J.JHAZMAT.2011.07.076.
Sujiono, E. H., Zabrian, D., Zurnansyah, Mulyati, Zharvan, V., Samnur, and Humairah, N.A., 2022. Fabrication and Characterization of Coconut Shell Activated Carbon Using Variation Chemical Activation for Wastewater Treatment Application. Results in Chemistry, 4, 100291. https://doi.org/10.1016/j.rechem.2022.100291.
Tang, H., Wang, M., Lu, T., and Pan, L., 2017. Porous Carbon Spheres as Anode Materials for Sodium-Ion Batteries with High Capacity and Long Cycling Life. Ceramics International, 43, 4475–4482. https://doi.org/10.1016/j.ceramint.2016.12.098.
Trisunaryanti, W., Wijaya, K., Triyono, T., Wahyuningtyas, N., Utami, S.P., and Larasati, S., 2022. Characteristics of Coconut Shell-Based Activated Carbon as Ni and Pt Catalyst Supports for Hydrotreating Calophyllum Inophyllum Oil into Hydrocarbon-Based Biofuel. Journal of Environmental Chemical Engineering, 10, 108209. https://doi.org/10.1016/j.jece.2022.108209.
Urbanowicz, M., Sadowska, K., Lemieszek, B., Paziewska-Nowak, A., Sołdatowska, A., Dawgul, M., and Pijanowska, D.G., 2023. Effect of Dendrimer-Based Interlayers for Enzyme Immobilization on a Model Electrochemical Sensing System for Glutamate. Bioelectrochemistry, 152. https://doi.org/10.1016/j.bioelechem.2023.108407.
Wahyuni, W.T., Putra, B.R., Heryanto, R., Rohaeti, E., Yanto, D.H.Y., and Fauzi, A., 2021. A Simple Approach to Fabricate a Screen-Printed Electrode and Its Application for Uric Acid Detection. International Journal of Electrochemical Science, 16, 1–14. https://doi.org/10.20964/2021.02.36.
Wang, G., Qian, B., Dong, Q., Yang, J., Zhao, Z., and Qiu, J., 2013. Highly Mesoporous Activated Carbon Electrode for Capacitive Deionization. Separation and Purification Technology, 103, 216–221. https://doi.org/10.1016/j.seppur.2012.10.041.
Wu, B., Yeasmin, S., Liu, Y., and Cheng, L.J., 2022. Ferrocene-Grafted Carbon Nanotubes for Sensitive Non-Enzymatic Electrochemical Detection of Hydrogen Peroxide. Journal of Electroanalytical Chemistry, 908. https://doi.org/10.1016/j.jelechem.2022.116101.
Refbacks
- There are currently no refbacks.