Pelapisan Phospolypid Lecithin pada Carbon Quantum Dots (CQDs) dari Tulang Ayam Terkonjugasi Silika Nanopartikel sebagai Penghantar Obat

Vicky Ahava Ferdinansyah, Khoirun Nisa Ashar, Husna Habib Musthofa, Farikha Amalina Nurbaiti, Salma Aqilah Rachmadani, Fajar Rakhman Wibowo

Abstract

Pengobatan kanker otak saat ini masih mengandalkan kemoterapi. Pada jaringan otak terdapat blood-brain barrier (BBB) yang menghambat pengiriman obat. Penelitian ini bertujuan untuk mengembangkan sistem penghantaran obat menggunakan Carbon Quantum Dots (CQDs) berbahan dasar tulang ayam terkonjugasi nanopartikel silika terkonjugasi (MSN) dan fosfolipid lesitin sebagai bahan yang potensial dalam mengobati kanker otak. Hasil CQDs yang disintesis secara hidrotermal menunjukkan pendaran cahaya biru di bawah sinar UV 365 nm dan puncak emisi pada 469 nm. MSN disintesis dan dikonjugasikan CQDs dengan metode solgel dan pemuatan doxorubicin (DOX) dengan adsorpsi obat. Pelapisan lipid pada DOX@MSN-CQDs dilakukan dengan teknik hidrasi lipid film dan ultrasonifikasi. Pelapisan lipid dan ukuran material pada MSN-CQDs dikonfirmasi menggunakan TEM dengan ukuran 93,77 ± 4,28 nm, FTIR, dan zeta potensial. Sintesis DOX@MSN-CQDs--L berhasil dilakukan diindikasikan dengan adanya perbedaan secara fisis dengan sifat lebih keruh dan warna yang lebih muda daripada MSN-CQDs. Hasil penelitian ini adalah pemuatan dan pelepasan doxorubicin berhasil dilakukan kapasitas pemuatan lebih dari 50% dan kumulatif pelepasan berkisar 73%. Material yang berhasil disintesis dalam penelitian ini berpotensi untuk diaplikasikan sebagai bahan teranostik dalam pengobatan kanker otak.

The Coating of Phospolypid Lecithin on Carbon Quantum Dots (CQDs) Derived from Chicken Bone Conjugated with Silica Nanoparticle as Drug Delivery. Current brain cancer treatment still relies heavily on chemotherapy. However, the presence of the blood-brain barrier (BBB) in brain tissue hinders effective drug delivery. This study aims to develop a drug delivery system using carbon quantum dots (CQDs) prepared from chicken bone conjugated silica nanoparticles (MSN) and lecithin phospholipids as potential material for treating brain cancer. The CQDs synthesized via the hydrothermal method exhibited blue fluorescence under 365 nm UV light and an emission peak at 469 nm. MSN was synthesized and conjugated with CQDs using the sol-gel method, followed by doxorubicin (DOX) loading through drug adsorption. Lipid coating on DOX@MSN-CQDs was performed using the lipid film hydration technique and ultrasonication. The lipid coating and material size of MSN-CQDs were confirmed using TEM, with a size of 93.77 ± 4.28 nm, FTIR, and zeta potential measurements. The successful synthesis of DOX@MSN-CQDs-L was indicated by physical differences, such as a cloudier appearance and lighter color compared to MSN-CQDs. The results demonstrated successful DOX loading and release, with a loading capacity exceeding 50% and a cumulative release of approximately 73%. The materials successfully synthesized in this study have the potential to be applied as theranostic agents in brain cancer treatment.

Keywords

brain cancer; CQDs; chicken bones; drug delivery; theranostic materials

Full Text:

PDF

References

Amin, M.U., Ali, S., Ali, M.Y., Tariq, I., Nasrullah, U., Pinnapreddy, S.R., Wölk, C., Bakowsky, U., and Brüßler, J., 2021. Enhanced Efficacy and Drug Delivery with Lipid Coated Mesoporous Silica Nanoparticles in Cancer Therapy. European Journal of Pharmaceutics and Biopharmaceutics, 165, 31–40. https://doi.org/10.1016/j.ejpb.2021.04.020.

Baghirov, H., Karaman, D., Viitala, T., Duchanoy, A., Lou, Y.-R., Mamaeva, V., Pryazhnikov, E., Khiroug, L., de Lange Davies, C., Sahlgren, C., and Rosenholm, J.M., 2016. Feasibility Study of the Permeability and Uptake of Mesoporous Silica Nanoparticles across the Blood-Brain Barrier. PLOS ONE, 11, 1–22. https://doi.org/10.1371/journal.pone.0160705.

Bellettato, C.M., and Scarpa, M., 2018. Possible Strategies to Cross the Blood–Brain Barrier. Italian Journal of Pediatrics, 44, 128–161. https://doi.org/10.1186/s13052-018-0563-0.

Chen, M., Hu, J., Wang, L., Li, Y., Zhu, C., Chen, C., Shi, M., Ju, Z., Cao, X., and Zhang, Z., 2020. Targeted and Redox-Responsive Drug Delivery Systems Based on Carbonic Anhydrase IX-Decorated Mesoporous Silica Nanoparticles for Cancer Therapy. Scientific Reports, 10, 1–12. https://doi.org/10.1038/s41598-020-71071-1.

Costa, R.S. da, Ferreira da Cunha, W., Simenremis Pereira, N., and Marti Ceschin, A., 2018. An Alternative Route to Obtain Carbon Quantum Dots from Photoluminescent Materials in Peat. Materials, 11, 1–13. https://doi.org/10.3390/ma11091492.

Effendi, J.A.J., and Anggun, N., 2019. Studi Efek Samping Penggunaan Obat Kemoterapi Pasien Kanker Payudara (Carcinoma Mammae) Di RSUD Kraton Pekalongan. Pena Medika Jurnal Kesehatan, 9, 48–54. https://doi.org/10.31941/pmjk.v9i2.968.

Esfahani, M.K.M., Alavi, S.E., Cabot, P.J., Islam, N., and Izake, E.L., 2022. Application of Mesoporous Silica Nanoparticles in Cancer Therapy and Delivery of Repurposed Anthelmintics for Cancer Therapy. Pharmaceutics, 14, 1–27. https://doi.org/10.3390/pharmaceutics14081579.

Flak, D., Przysiecka, Ł., Nowaczyk, G., Scheibe, B., Kościński, M., Jesionowski, T., and Jurga, S., 2018. GQDs-MSNs Nanocomposite Nanoparticles for Simultaneous Intracellular Drug Delivery and Fluorescent Imaging. Journal of Nanoparticle Research, 20, 306. https://doi.org/10.1007/s11051-018-4416-y.

Frasco, M.F., and Chaniotakis, N., 2009. Semiconductor Quantum Dots in Chemical Sensors and Biosensors. Sensors, 9, 7266–7286. https://doi.org/10.3390/s90907266.

Ghosh, D., Sarkar, K., Devi, P., Kim, K.-H., and Kumar, P., 2021. Current and Future Perspectives of Carbon and Graphene Quantum Dots: From Synthesis to Strategy for Building Optoelectronic and Energy Devices. Renewable and Sustainable Energy Reviews, 135, 1–19. https://doi.org/10.1016/j.rser.2020.110391.

Han, N., Wang, Yu, Bai, J., Liu, J., Wang, Ying, Gao, Y., Jiang, T., Kang, W., and Wang, S., 2016. Facile Synthesis of the Lipid Bilayer Coated Mesoporous Silica Nanocomposites and Their Application in Drug Delivery. Microporous and Mesoporous Materials, 219, 209–218. https://doi.org/10.1016/j.micromeso.2015.08.006.

Karimi, M., Eslami, M., Sahandi‐Zangabad, P., Mirab, F., Farajisafiloo, N., Shafaei, Z., Ghosh, D., Bozorgomid, M., Dashkhaneh, F., and Hamblin, M.R., 2016. PH‐Sensitive Stimulus‐responsive Nanocarriers for Targeted Delivery of Therapeutic Agents. WIREs Nanomedicine and Nanobiotechnology, 8, 696–716. https://doi.org/10.1002/wnan.1389.

Kristian, M., Andryana, S., and Gunaryati, A., 2021. Diagnosa Penyakit Tumor Otak Menggunakan Metode Waterfall Dan Algoritma Depth First Search. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 6, 11–24. https://doi.org/10.29100/jipi.v6i1.1840.

Li, H., He, X., Kang, Z., Huang, H., Liu, Y., Liu, J., Lian, S., Tsang, C.H.A., Yang, X., and Lee, S., 2010. Water‐Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angewandte Chemie International Edition, 49, 4430–4434. https://doi.org/10.1002/anie.200906154.

Lim, S.Y., Shen, W., and Gao, Z., 2015. Carbon Quantum Dots and Their Applications. Chemical Society Reviews, 44, 362–381. https://doi.org/10.1039/C4CS00269E.

Liu, Y., and Zhang, N., 2012. Gadolinium Loaded Nanoparticles in Theranostic Magnetic Resonance Imaging. Biomaterials, 33, 5363–5375. https://doi.org/10.1016/j.biomaterials.2012.03.084.

Ma, J., Wu, H., Li, Y., Liu, Z., Liu, G., Guo, Y., Hou, Z., Zhao, Q., Chen, D., and Zhu, X., 2018. Novel Core-Interlayer-Shell DOX/ZnPc Co-Loaded MSNs@ PH-Sensitive CaP@PEGylated Liposome for Enhanced Synergetic Chemo-Photodynamic Therapy. Pharmaceutical Research, 35, 57. https://doi.org/10.1007/s11095-017-2295-z.

Mendiratta, S., Hussein, M., Nasser, H.A., and Ali, A.A.A., 2019. Multidisciplinary Role of Mesoporous Silica Nanoparticles in Brain Regeneration and Cancers: From Crossing the Blood–Brain Barrier to Treatment. Particle & Particle Systems Characterization, 36, 1900195. https://doi.org/10.1002/ppsc.201900195.

Nguyen, D.T.D., Nguyen, N.H., Truong‐Thi, N., Ching, Y.C., Nguyen, T.P., and Nguyen, D.H., 2023. Development of Liposome Capped Mesoporous Silica Nanoparticle for Anticancer Drug Delivery. Vietnam Journal of Chemistry, 61, 51–58. https://doi.org/10.1002/vjch.202300052.

Ramanathan, M., Boovarahan, S.R., Gandhi, S., and Kurian, G.A., 2021. Synthesis and Characterization of Mesoporous Silica SBA 15 Improved the Efficacy of CORM-2 against Hypoxia Reoxygenation Injury. Journal of Porous Materials, 28, 1969–1977. https://doi.org/10.1007/s10934-021-01132-x.

Ru, Y., Waterhouse, G.I.N., and Lu, S., 2022. Aggregation in Carbon Dots. Aggregate, 3, 1–14. https://doi.org/10.1002/agt2.296.

Sari, Windarti, and Wahyuni, 2014. Karakteristik Klinik Dan Histopatologi Tumor Otak Di Dua Rumah Sakit Di Kota Bandar Lampung. Faculty of Medicine Lampung University, 3, 48–56.

Song, X., Guo, Q., Cai, Z., Qiu, J., and Dong, G., 2019. Synthesis of Multi-Color Fluorescent Carbon Quantum Dots and Solid State CQDs@SiO2 Nanophosphors for Light-Emitting Devices. Ceramics International, 45, 17387–17394. https://doi.org/10.1016/j.ceramint.2019.05.299.

Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F., 2021. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209–249. https://doi.org/10.3322/caac.21660.

Turker, M.Z., Ma, K., and Wiesner, U., 2019. Bimodal Morphology Transition Pathway in the Synthesis of Ultrasmall Fluorescent Mesoporous Silica Nanoparticles. The Journal of Physical Chemistry C, 123, 9582–9589. https://doi.org/10.1021/acs.jpcc.9b00860.

Vieira, D.B., and Gamarra, L.F., 2016. Getting into the Brain: Liposome-Based Strategies for Effective Drug Delivery across the Blood–Brain Barrier. International Journal of Nanomedicine,. https://doi.org/10.2147/IJN.S117210.

Wang, Y., Zhao, K., Xie, L., Li, K., Zhang, W., Xi, Z., Wang, X., Xia, M., and Xu, L., 2022. Construction of Calcium Carbonate-Liposome Dual-Film Coated Mesoporous Silica as a Delayed Drug Release System for Antitumor Therapy. Colloids and Surfaces B: Biointerfaces, 212, 1–8. https://doi.org/10.1016/j.colsurfb.2022.112357.

Wünsch, A., Mulac, D., and Langer, K., 2021. Lecithin Coating as Universal Stabilization and Functionalization Strategy for Nanosized Drug Carriers to Overcome the Blood–Brain Barrier. International Journal of Pharmaceutics, 593, 1–12. https://doi.org/10.1016/j.ijpharm.2020.120146.

Ye, H., Liu, B., Wang, J., Zhou, C., Xiong, Z., and Zhao, L., 2022. A Hydrothermal Method to Generate Carbon Quantum Dots from Waste Bones and Their Detection of Laundry Powder. Molecules, 27, 1–15. https://doi.org/10.3390/molecules27196479.

Yu, Z., Zhang, L., Wang, X., He, D., Suo, H., and Zhao, C., 2020. Fabrication of ZnO/Carbon Quantum Dots Composite Sensor for Detecting NO Gas. Sensors, 20, 4961. https://doi.org/10.3390/s20174961.

Zhou, R., Sun, S., Li, C., Wu, L., Hou, X., and Wu, P., 2018. Enriching Mn-Doped ZnSe Quantum Dots onto Mesoporous Silica Nanoparticles for Enhanced Fluorescence/Magnetic Resonance Imaging Dual-Modal Bio-Imaging. ACS Applied Materials & Interfaces, 10, 34060–34067. https://doi.org/10.1021/acsami.8b14554.

Zhu, L., Zhang, W., Song, P., Li, W., Chen, X., Ge, F., Gui, L., Yang, K., Tao, Y., and Guocheng, D., 2022. Redox-Responsive Mesoporous Silica Nanoparticles for Chemo- Photodynamic Combination Cancer Therapy. Materials Research Express, 9, 1–16. https://doi.org/10.1088/2053-1591/ac65e3.

Refbacks

  • There are currently no refbacks.