Enhancement of Liberica Coffee Quality by Wet Fermentation using Bacillus Subtilis

Indra Lasmana Tarigan, Ericha Aulia, Heriyanti Heriyanti, Madyawati Latief, Sutrisno Sutrisno

Abstract

Coffee is a tree-shaped plant species belonging to the family Rubiaceae and genus Coffea. Liberica coffee is interesting to study, because this coffee is a plant that can adapt to peatland types. One of the efforts to increase the additional value of coffee commodities is to make a product with fermentation technology. Fermentation is carried out using probiotic bacteria, which are found in the digestive tract of mongoose animals which are believed to be able to produce coffee with a distinctive taste and aroma. One of the probiotic bacteria that can be used as a fermentation medium to replace mongoose is Bacillus subtilis. This study aims to analyze the effect of fermentation of Liberica coffee using Bacillus Subtilis on chemical compounds, physicochemical and sensory properties of Liberica coffee. The study begins from the preparation of the inoculum. After fermentation, proceed with the roasting process and grinding coffee beans into ground coffee which will then be tested. Testing in this study included sensory tests, total phenolics, total flavonoids, caffeine levels, chlorogenic acid levels, GC-MS compound analysis, antioxidants and proximate analysis. The analysis was performed using UV-Vis and GC-MS spectrophotometers. The results showed fermented coffee improved the sensory quality of coffee and physical quality. At the total phenolic level, total flavonoids, antioxidants and GC-MS compound analysis of fermented Liberica coffee obtained higher results. In addition, fermented Liberica coffee is lower in caffeine and chlorogenic acid than the original Liberica coffee.

Keywords

Liberica Coffee; Fermentation; Bacillus subtilis

References

Adrianto, R., Wiraputra, D., Agrippina, F. D., and Andaningrum, A. Z., 2020. Decrease in Caffeine Levels in Robusta Coffee Beans using Fermentation with Lactic Acid Bacteria Leuconostoc mesenteroides and Lactobacillus plantarum. Jurnal Dinamika Penelitian Industri, 31(2), 163–169. http://ejournal.kemenperin.go.id/dpi/article/view/6424.

Agustriana, E., Valentino, H. A., Rahmani, N., Nuryati, N., Firmanto, H., Rachmayati, R., Yulianti, S. E., Nuryana, I., Yopi, Y., and Lisdiyanti, P., 2023. Fermentation Effect of Cacao Beans Originate from Jember on Polyphenol-Flavonoid Content and Radical Scavenging Activity. ALCHEMY Jurnal Penelitian Kimia, 19(1), 23. https://doi.org/10.20961/alchemy.19.1.60831.23-31.

Ahmad, A. R., Juwita, J., and Ratulangi, S. A. D., 2015. Determination of Total Phenolic and Flavonoid Content of Methanol Extract of Patikala Fruit and Leaves (Etlingera elatior (Jack) R.M.SM). Pharmaceutical Sciences and Research, 2(1), 1–10. https://doi.org/10.7454/psr.v2i1.3481.

Alamri, E., Rozan, M., and Bayomy, H., 2022. A study of chemical Composition, Antioxidants, and volatile compounds in roasted Arabic coffee: Chemical Composition, Antioxidants and volatile compounds in Roasted Arabic Coffee. Saudi Journal of Biological Sciences, 29(5), 3133–3139. https://doi.org/10.1016/j.sjbs.2022.03.025.

Ananda, H. D., Nuralang, Tarigan, I. L., Susanto, N. C. A., and Nelson., 2022. Microencapsulation of Fermented Red Palm Oil with L. casei as Nutracetical Source. Jurnal Rekayasa Kimia dan Lingkungan, 17(2), 138–151. https://doi.org/10.23955/rkl.v17i2.27110.

Awwad, S., Issa, R., Alnsour, L., Albals, D., and Al-momani, I., 2021. Quantification of Caffeine and Chlorogenic Acid in Green and Roasted Coffee Samples Using HPLC-DAD and Evaluation of the Effect of Degree of Roasting on Their Levels. Molecules, 26(24), 2–9. http://dx.doi.org/10.3390/molecules26247502.

Balachandran, C., Vishali, A., Nagendran, N. A., Baskar, K., Hashem, A., and Abd-Allah, E. F., 2021. Optimization of Protease Production from Bacillus Halodurans Under Solid State Fermentation Using Agrowastes. Saudi. Journal of Biological Sciences, 28(8), 4263–4269. https://doi.org/10.1016/j.sjbs.2021.04.069.

Bilen, C., El Chami, D., Mereu, V., Trabucco, A., Marras, S., and Spano, D., 2023. A Systematic Review on the Impacts of Climate Change on Coffee Agrosystems. Plants, 12(1), 1–20. https://doi.org/10.3390/plants12010102.

Byerlee, D., 2014. The Fall and Rise Again of Plantations in Tropical Asia: History Repeated?. Land, 3(3), 574–597. https://doi.org/10.3390/land3030574.

Campuzano-duque, L. F., Herrera, J. C., Ged, C., and Blair, M. W., 2021. Bases for the Establishment of Robusta Coffee (Coffea canephora) as a New Crop for Colombia. Agronomy, 11, 1–13.

Cao, H., Saroglu, O., Karadag, A., Diaconeasa, Z., Zoccatelli, G., Conte-Junior, C. A., Gonzalez-Aguilar, G. A., Ou, J., Bai, W., Zamarioli, C. M., de Freitas, L. A. P., Shpigelman, A., Campelo, P. H., Capanoglu, E., Hii, C. L., Jafari, S. M., Qi, Y., Liao, P., Wang, M., and Xiao, J., 2021. Available Technologies on Improving The Stability of Polyphenols in Food Processing. Food Frontiers, 2(2), 109–139. https://doi.org/10.1002/fft2.65.

Chi, Z., Wang, Z. P., Wang, G. Y., Khan, I., and Chi, Z. M., 2016. Microbial Biosynthesis and Secretion of L-Malic Acid and Its Applications. Critical Reviews in Biotechnology, 36(1), 99–107. https://doi.org/10.3109/07388551.2014.924474.

Chukeatirote, E., 2015. Thua Nao: Thai Fermented Soybean. Journal of Ethnic Foods, 2(3), 115–118. https://doi.org/10.1016/j.jef.2015.08.004.

Cindrić, I. J., Kunštić, M., Zeiner, M., Stingeder, G., and Rusak, G., 2011. Sample Preparation Methods for The Determination of The Antioxidative Capacity of Apple Juices. Croatica Chemica Acta, 84(3), 435–438. https://doi.org/10.5562/cca1756.

Correa, E. C., Jiménez-Ariza, T., Díaz-Barcos, V., Barreiro, P., Diezma, B., Oteros, R., Echeverri, C., Arranz, F. J., and Ruiz-Altisent, M., 2014. Advanced Characterisation of a Coffee Fermenting Tank by Multi-distributed Wireless Sensors: Spatial Interpolation and Phase Space Graphs. Food and Bioprocess Technology, 7(11), 3166–3174. https://doi.org/10.1007/s11947-014-1328-4.

Devi, L. S., Kumar, V., Rani, A., Tayalkar, T., Mittal, P., Anshu, A. K., and Singh, T. A., 2021. Fatty Acid Composition, Antinutritional Factors, and Oligosaccharides Concentration of Hawaijar (An Ethnic Fermented Soyfood of India) As Affected by Genotype and Bacillus Subtilis Strain. Indonesian Food and Nutrition Progress, 17(2), 45. https://doi.org/10.22146/ifnp.58664.

Erskine, E., Gültekin Subaşl, B., Vahapoglu, B., and Capanoglu, E., 2022. Coffee Phenolics and Their Interaction with Other Food Phenolics: Antagonistic and Synergistic Effects. ACS Omega, 7(2), 1595–1601. https://doi.org/10.1021/acsomega.1c06085.

Farida, A., Ristanti, E., and Kumoro, A. C., 2013. Reducing Caffeine and Total Acid Levels in Robusta Coffee Beans using Facultative Anaerobic Fermentation Technology with Microbes Nopkor MZ-15. Jurnal Teknologi Kimia dan Industri, 2(3), 70–75.

Febrianto, N. A., and Zhu, F., 2023. Coffee Bean Processing: Emerging Methods and Their Effects on Chemical, Biological and Sensory Properties. Food Chemistry, 412(2023), 1–20. https://doi.org/10.1016/j.foodchem.2023.135489.

Haile, M., and Kang, W. H., 2019. Antioxidant Activity, Total Polyphenol, Flavonoid and Tannin Contents of Fermented Green Coffee Beans with Selected Yeasts. Fermentation, 5(1), 1–13. https://doi.org/10.3390/fermentation5010029.

Hayati, R., Marliah, A., and Rosita, F., 2012. Chemical Characteristics and Sensory Evaluation of Arabica Coffee Powder. Journal Floratek, 7, 66–75.

Ibrahim, S., Shukor, M. Y., Syed, M. A., Rahman, N. A. A., Khalil, K. A., Khalid, A., and Ahmad, S. A., 2014. Bacterial Degradation of Caffeine: A Review. Asian Journal of Plant Biology, 2(1), 19–28. https://doi.org/10.54987/ajpb.v2i1.84.

Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., and Fakiri, E. M., 2013. Health Benefits of Probiotics: A Review. ISRN Nutrition, 2013, 1–7. https://doi.org/10.5402/2013/481651.

Kwak, H. S., Jeong, Y., and Kim, M., 2018. Effect of Yeast Fermentation of Green Coffee Beans on Antioxidant Activity and Consumer Acceptability. Hindawi Journal of Food Quality, 2018, 1–18. https://doi.org/10.1155/2018/5967130.

Latief, M., Muhaimin, Heriyanti, Tarigan, I. L., and Sutrisno., 2022. Determination Antioxidant Activity of Coffea Arabica, Coffea Canephora, Coffea Liberica and Sunscreens Cream Formulation for Sun Protection Factor (SPF). Pharmacognosy Journal, 14(2), 335–342. https://doi.org/10.5530/pj.2022.14.43.

Lee, L. W., Cheong, M. W., Curran, P., Yu, B., and Liu, S. Q., 2015. Coffee Fermentation and Flavor - An Intricate and Delicate Relationship. Food Chemistry, 185, 182–191. https://doi.org/10.1016/j.foodchem.2015.03.124.

Morales, D., 2020. Biological Activities of Kombucha Beverages: The Need of Clinical Evidence. Trends in Food Science and Technology, 105, 323–333. https://doi.org/10.1016/j.tifs.2020.09.025.

Munandar, K., Afriayanti, D., and Karimah, I., 2022. Isolation and Characteristics of Lactic Acid Bacteria in Feces of Jember Local Mongoose. International Applied Science, 1(1), 43–47. https://doi.org/10.32528/ias.v1i1.46.

Murthy, P. S., and Naidu, M. M., 2011. Improvement of Robusta Coffee Fermentation with Microbial Enzymes. European Journal of Applied Sciences, 3(4), 130–139.

Mutha, R. E., Tatiya, A. U., and Surana, S. J., 2021. Flavonoids as Natural Phenolic Compounds and Their Role in Therapeutics: An Overview. Future Journal of Pharmaceutical Sciences, 7(1), 1–13. https://doi.org/10.1186/s43094-020-00161-8.

Nasanit, R., and Satayawut, K., 2015. Microbiological Study During Coffee Fermentation of Coffea Arabica Var. Chiangmai 80 in Thailand. Kasetsart Journal - Natural Science, 49(1), 32–41.

Ngamnok, T., Nimlamool, W., Amador-Noguez, D., Palaga, T., and Meerak, J., 2023. Efficiency of Lactiplantibacillus plantarum JT-PN39 and Paenibacillus motobuensis JT-A29 for Fermented Coffee Applications and Fermented Coffee Characteristics. Foods, 12(15). https://doi.org/10.3390/foods12152894.

Nizori, A., Jayanti, E., Surhaini, S., Gusriani, I., Mursyid, M., and Purba, D. T., 2021. Influence of Fermentation Conditions on The Antioxidant and Physico-Chemical of Arabica Coffee from Kerinci Region of Indonesia. Indonesian Food Science and Technology Journal, 5(1), 34–38. https://doi.org/10.22437/ifstj.v5i1.17383.

Nugraha, I. M. A. D. P., Prayascita, P. W., Dwidhanata, I. M. S., Putra, I. P. A. M., Cahyani, N. K. N., and Samirana, P. O., 2020. Identification of Volatile Components of Coffee Bean Epidermis (Coffea robusta) for Optimization of Usefulness. Jurnal Farmasi Udayana, 9(2), 100. https://doi.org/10.24843/jfu.2020.v09.i02.p05.

Oumer, O. J., and Abate, D., 2017. Characterization of Pectinase from Bacillus subtilis Strain Btk 27 and Its Potential Application in Removal of Mucilage from Coffee Beans. Enzyme Research, 2017, 1–17. https://doi.org/10.1155/2017/7686904.

Prajanti, S. D. W., Pramono, S. E., and Adzmin, F., 2020. Factors Influencing Indonesia Coffee Exports Volume. Proceedings of the International Conference on Research and Academic Community Services (ICRACOS 2019), 390, 41–45. https://doi.org/10.2991/icracos-19.2020.8.

Prakash, I., R, S. S., P, S. H., Kumar, P., Om, H., Basavaraj, K., and Murthy, P. S., 2022. Metabolomics and Volatile Fingerprint of Yeast Fermented Robusta Coffee: A Value Added Coffee. LWT- Food Science and Technology, 154, 1–11. https://doi.org/10.1016/j.lwt.2021.112717.

Purwoko, T., Suranto, Setyaningsih, R., and Marliyana, S. D., 2023. Caffeine Degradation by Food Microorganisms. Biodiversitas, 24(6), 3495–3502. https://doi.org/10.13057/biodiv/d240647.

Putri, S. P., Jumhawan, U., and Fukusaki, E., 2015. Application of GC / MS and GC / FID-Based Metabolomics for Authentication of Asian Palm Civet Coffee. Brazilian Journal of Plant Physiology, 18(1), 165–174. https://doi.org/10.1590/S1677-04202006000100012.

Sharma, R., Garg, P., Kumar, P., Bhatia, S. K., and Kulshrestha, S., 2020. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation, 6(4), 1–20. https://doi.org/10.3390/fermentation6040106.

Sipayung, S. M., Rai Widarta, W., Putu, D., and Pratiwi, K., 2019. Effect of Fermentation Time by Bacillus subtilis on The Characteristics of Sere Kedele. Jurnal Ilmu dan Teknologi Pangan, 8(3), 226–237.

Somporn, C., Kamtuo, A., Theerakulpisut, P., and Siriamornpun, S., 2011. Effects of Roasting Degree on Radical Scavenging Activity, Phenolics and Volatile Compounds of Arabica Coffee Beans (Coffea arabica L. cv. Catimor). International Journal of Food Science and Technology, 46(11), 2287–2296. https://doi.org/10.1111/j.1365-2621.2011.02748.x.

Su, Y., Li, H., Hu, Z., Zhang, Y., Guo, L., Shao, M., Man, C., and Jiang, Y., 2023. Research on Degradation of Polysaccharides During Hericium Erinaceus Fermentation. LWT - Food Science and Technology, 173, 1–11. https://doi.org/10.1016/j.lwt.2022.114276.

Towaha, J., and Rubiyo, R., 2016. Physical Quality and Flavor of Arabica coffee beans fermented by Probiotic Microbes from Civet Digestive System. Jurnal Tanaman Industri Dan Penyegar, 3(2), 61. https://doi.org/10.21082/jtidp.v3n2.2016.p61-70.

Uliyandari, M., Sumpono, S., and Muslim, C., 2021. The Effect of Civet Coffee Isolate and Time Fermentation on Robusta Coffee Protein Profiles. Journal of Physics: Conference Series, 1731(1). https://doi.org/10.1088/1742-6596/1731/1/012019.

Usman, D., Suprihadi, A., and Kusdiyantini, E., 2015. Fermentation of Robusta Coffee (Coffea canephora) Using Lactic Acid bacteria isolate from Civet Feces with Long Fermentation Time. Jurnal Biologi, 4(3).

Wibowo, N. A., Mangunwardoyo, W., Santoso, T. J., and Yasman, 2021. Effect of Fermentation on Sensory Quality of Liberica Coffee Beans Inoculated with Bacteria from Saliva Arctictis Binturong Raffles. Biodiversitas, 22(9), 3922–3928. https://doi.org/10.13057/biodiv/d220938.

Refbacks

  • There are currently no refbacks.