Enhancement of Liberica Coffee Quality by Wet Fermentation using Bacillus subtilis

Indra Lasmana Tarigan, Ericha Aulia, Heriyanti Heriyanti, Madyawati Latief, Sutrisno Sutrisno

Abstract

Coffee is a tree species in the Rubiaceae family and Coffea genus. One way to enhance the value of coffee commodities is by using fermentation technology. Fermentation can use probiotic bacteria found in mongoose digestive tracts, creating coffee with a unique taste and aroma. Bacillus subtilis is one of these bacteria, offering an alternative to those from mongoose. This study aimed to analyze the effects of fermentation using B. subtilis bacteria on the physicochemical and sensory properties of Liberica coffee. The study method included bacteria preparation, coffee fermentation, and testing. The samples' total phenolics, flavonoids, caffeine, and chlorogenic acid contents were estimated. The analysis was performed using UV-Vis and GC-MS spectrophotometers. The results revealed that the fermentation process using B. subtilis improved the sensory and physical qualities of the fermented Liberica coffee. The total values of phenolic and flavonoid contents and antioxidants of the fermented Liberica coffee were higher than that of the original coffee. GC-MS analysis exhibited compounds in the fermented coffee in which the highest was N-Dodecyl-N-(trifluoroacetyl)dodecanamide (C26H48F3NO2), with a retention time of 23.73 minutes and an area percentage of 18.96%. Moreover, the caffeine and chlorogenic acid of the fermented Liberica coffee was lower than that of the original coffee.

Keywords

bacillus subtilis; fermentation; liberica coffee

Full Text:

PDF

References

Adrianto, R., Wiraputra, D., Agrippina, F. D., and Andaningrum, A. Z., 2020. Decrease in Caffeine Levels in Robusta Coffee Beans using Fermentation with Lactic Acid Bacteria Leuconostoc mesenteroides and Lactobacillus plantarum. Jurnal Dinamika Penelitian Industri, 31(2), 163–169. http://ejournal.kemenperin.go.id/dpi/article/view/6424.

Agustriana, E., Valentino, H. A., Rahmani, N., Nuryati, N., Firmanto, H., Rachmayati, R., Yulianti, S. E., Nuryana, I., Yopi, Y., and Lisdiyanti, P., 2023. Fermentation Effect of Cacao Beans Originate from Jember on Polyphenol-Flavonoid Content and Radical Scavenging Activity. ALCHEMY Jurnal Penelitian Kimia, 19(1), 23. https://doi.org/10.20961/alchemy.19.1.60831.23-31.

Alamri, E., Rozan, M., and Bayomy, H., 2022. A Study of Chemical Composition, Antioxidants, and Volatile Compounds in Roasted Arabic Coffee: Chemical Composition, Antioxidants and Volatile Compounds in Roasted Arabic Coffee. Saudi Journal of Biological Sciences, 29(5), 3133–3139. https://doi.org/10.1016/j.sjbs.2022.03.025.

Awwad, S., Issa, R., Alnsour, L., Albals, D., and Al-Momani, I., 2021. Quantification of Caffeine and Chlorogenic Acid in Green and Roasted Coffee Samples Using HPLC-DAD and Evaluation of the Effect of Degree of Roasting on Their Levels. Molecules, 26(24), 7502. https://doi.org/10.3390/molecules26247502.

Balachandran, C., Vishali, A., Nagendran, N. A., Baskar, K., Hashem, A., and Abd Allah, E. F., 2021. Optimization of Protease Production from Bacillus halodurans Under Solid State Fermentation Using Agrowastes. Saudi Journal of Biological Sciences, 28(8), 4263–4269. https://doi.org/10.1016/j.sjbs.2021.04.069.

Bilen, C., El Chami, D., Mereu, V., Trabucco, A., Marras, S., and Spano, D., 2023. A Systematic Review on The Impacts of Climate Change on Coffee Agrosystems. Plants, 12(1), 1–20. https://doi.org/10.3390/plants12010102.

Byerlee, D., 2014. The fall and rise again of plantations in tropical Asia: History repeated? Land, 3(3), 574–597. https://doi.org/10.3390/land3030574.

Campuzano-Duque, L. F., Herrera, J. C., Ged, C., and Blair, M. W., 2021. Bases for The Establishment of Robusta Coffee (Coffea canephora) as A New Crop for Colombia. Agronomy, 11(12), 2550. https://doi.org/10.3390/agronomy11122550.

Cao, H., Saroglu, O., Karadag, A., Diaconeasa, Z., Zoccatelli, G., Conte‐Junior, C. A., Gonzalez‐Aguilar, G. A., Ou, J., Bai, W., Zamarioli, C. M., de Freitas, L. A. P., Shpigelman, A., Campelo, P. H., Capanoglu, E., Hii, C. L., Jafari, S. M., Qi, Y., Liao, P., Wang, M., Zou, L., Bourke, L., Gandara, J. S., and Xiao, J., 2021. Available Technologies on Improving The Stability of Polyphenols in Food Processing. Food Frontiers, 2(2), 109–139. https://doi.org/10.1002/fft2.65.

Chi, Z., Wang, Z. P., Wang, G. Y., Khan, I., and Chi, Z. M., 2016. Microbial Biosynthesis and Secretion Of L-Malic Acid And Its Applications. Critical Reviews in Biotechnology, 36(1), 99–107. https://doi.org/10.3109/07388551.2014.924474.

Chukeatirote, E., 2015. Thua Nao: Thai Fermented Soybean. Journal of Ethnic Foods, 2(3), 115–118. https://doi.org/10.1016/j.jef.2015.08.004.

Cindrić, I. J., Kunštić, M., Zeiner, M., Stingeder, G., and Rusak, G., 2011. Sample Preparation Methods for The Determination of The Antioxidative Capacity of Apple Juices. Croatica Chemica Acta, 84(3), 435–438. https://doi.org/10.5562/cca1756.

Correa, E. C., Jiménez-Ariza, T., Díaz-Barcos, V., Barreiro, P., Diezma, B., Oteros, R., Echeverri, C., Arranz, F. J., and Ruiz-Altisent, M., 2014. Advanced Characterisation of a Coffee Fermenting Tank by Multi-distributed Wireless Sensors: Spatial Interpolation and Phase Space Graphs. Food and Bioprocess Technology, 7(11), 3166–3174. https://doi.org/10.1007/s11947-014-1328-4.

Devi, L. S., Kumar, V., Rani, A., Tayalkar, T., Mittal, P., Anshu, A. K., and Singh, T. A., 2021. Fatty Acid Composition, Antinutritional Factors, and Oligosaccharides Concentration of Hawaijar (An Ethnic Fermented Soyfood of India) As Affected by Genotype and Bacillus Subtilis Strain. Indonesian Food and Nutrition Progress, 17(2), 45. https://doi.org/10.22146/ifnp.58664.

Erskine, E., Gültekin Subaşl, B., Vahapoglu, B., and Capanoglu, E., 2022. Coffee Phenolics and Their Interaction with Other Food Phenolics: Antagonistic and Synergistic Effects. ACS Omega, 7(2), 1595–1601. https://doi.org/10.1021/acsomega.1c06085.

Farida, A., R Ristanti, E., and Kumoro, A.C., 2013. Penurunan Kadar Kafein dan Asam Total pada Biji Kopi Robusta Menggunakan Teknologi Fermentasi Anaerob Fakultatif dengan Mikroba Nopkor Mz-15. Jurnal Teknologi Kimia dan Industri, 2(3), 70–75.

Febrianto, N. A., and Zhu, F., 2023. Coffee Bean Processing: Emerging Methods and Their Effects on Chemical, Biological and Sensory Properties. Food Chemistry, 412, 135489. https://doi.org/10.1016/j.foodchem.2023.135489.

Gao, Y., Hou, L., Hu, M., Li, D., Tian, Z., Wen, W., Fan, B., Li, S., and Wang, F., 2022. Effects of Bacillus subtilis BSNK-5-Fermented Soymilk on the Gut Microbiota by In Vitro Fecal Fermentation. Foods, 11(21). https://doi.org/10.3390/foods11213501.

Haile, M., and Kang, W. H., 2019. Antioxidant Activity, Total Polyphenol, Flavonoid and Tannin Contents of Fermented Green Coffee Beans with Selected Yeasts. Fermentation, 5(1). https://doi.org/10.3390/fermentation5010029.

Hayati, R., Marliah, A., and Rosita, F., 2012. Chemical Characteristics and Sensory Evaluation of Arabica Coffee Powder. J. Floratek, 7, 66–75.

Hertanti, H., Nuralang, N., Susanto, N. C. A., Tarigan, I. L., and Nelson, N., 2023. Microencapsulation of Fermented Red Palm Oil with L. casei as Nutracetical Source. Jurnal Rekayasa Kimia & Lingkungan, 17(2), 138–151. https://doi.org/10.23955/rkl.v17i2.27110.

Ibrahim, S., Shukor, M. Y., Syed, M. A., Rahman, N. A. A., Khalil, K. A., Khalid, A., and Ahmad, S. A., 2014. Bacterial Degradation of Caffeine: A Review. Asian Journal of Plant Biology, 2(1), 19–28. https://doi.org/10.54987/ajpb.v2i1.84.

Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., and Fakiri, E. M., 2013. Health Benefits of Probiotics: A Review. ISRN Nutrition, 2013, 1–7. https://doi.org/10.5402%2F2013%2F481651.

Kwak, H. S., Jeong, Y., and Kim, M., 2018. Effect of Yeast Fermentation of Green Coffee Beans on Antioxidant Activity and Consumer Acceptability. Hindawi Journal of Food Quality, 2018. https://doi.org/10.1155/2018/5967130.

Latief, M., Muhaimin, Heriyanti, Tarigan, I. L., and Sutrisno., 2022. Determination Antioxidant Activity of Coffea Arabica, Coffea Canephora, Coffea Liberica and Sunscreens Cream Formulation for Sun Protection Factor (SPF). Pharmacognosy Journal, 14(2), 335–342. https://doi.org/10.5530/pj.2022.14.43.

Lee, L. W., Cheong, M. W., Curran, P., Yu, B., and Liu, S. Q., 2015. Coffee Fermentation and Flavor - An Intricate and Delicate Relationship. Food Chemistry, 185, 182–191. https://doi.org/10.1016/j.foodchem.2015.03.124.

Morales, D., 2020. Biological Activities of Kombucha Beverages: The Need of Clinical Evidence. Trends in Food Science and Technology, 105(August), 323–333. https://doi.org/10.1016/j.tifs.2020.09.025.

Munandar, K., Afriayanti, D., and Karimah, I., 2022. Isolation and Characteristics of Lactic Acid Bacteria in Feces of Jember Local Mongoose. International Applied Science, 1(1), 43–47. https://doi.org/10.32528/ias.v1i1.46.

Murthy, P. S., and Madhava Naidu, M., 2011. Improvement of Robusta Coffee Fermentation with Microbial Enzymes. European Journal of Applied Sciences, 3(4), 130–139.

Mutha, R. E., Tatiya, A. U., and Surana, S. J., 2021. Flavonoids as Natural Phenolic Compounds and Their Role in Therapeutics: An Overview. Future Journal of Pharmaceutical Sciences, 7(1). https://doi.org/10.1186/s43094-020-00161-8

Nasanit, R., and Satayawut, K., 2015. Microbiological Study During Coffee Fermentation of Coffea Arabica Var. Chiangmai 80 in Thailand. Kasetsart Journal - Natural Science, 49(1), 32–41. https://li01.tci-thaijo.org/index.php/anres/article/view/243516

Navarra, G., Moschetti, M., Guarrasi, V., Mangione, M. R., Militello, V., and Leone, M., 2017. Simultaneous Determination of Caffeine and Chlorogenic Acids in Green Coffee by UV/Vis spectroscopy. Journal of Chemistry, 2017. https://doi.org/10.1155/2017/6435086

Ngamnok, T., Nimlamool, W., Amador-Noguez, D., Palaga, T., and Meerak, J., 2023. Efficiency of Lactiplantibacillus plantarum JT-PN39 and Paenibacillus motobuensis JT-A29 for Fermented Coffee Applications and Fermented Coffee Characteristics. Foods, 12(15). https://doi.org/10.3390/foods12152894.

Nizori, A., Jayanti, E., Surhaini, S., Gusriani, I., Mursyid, M., and Purba, D. T., 2021. Influence of Fermentation Conditions on The Antioxidant and Physico-Chemical of Arabica Coffee from Kerinci Region of Indonesia. Indonesian Food Science & Technology Journal, 5(1), 34–38. https://doi.org/10.22437/ifstj.v5i1.17383.

Oumer, O. J., and Abate, D., 2017. Characterization of Pectinase from Bacillus subtilis Strain Btk 27 and Its Potential Application in Removal of Mucilage from Coffee Beans. Enzyme Research, 2017. https://doi.org/10.1155/2017/7686904.

Prajanti, S. D. W., Pramono, S. E., and Adzmin, F., 2020. Factors Influencing Indonesia Coffee Exports Volume. International Conference on Research and Academic Community Services (ICRACOS 2019), 41–45. https://doi.org/10.2991/icracos-19.2020.8.

Prakash, I., R, S. S., P, S. H., Kumar, P., Om, H., Basavaraj, K., and Murthy, P. S., 2022. Metabolomics and Volatile Fingerprint of Yeast Fermented Robusta Coffee: A Value Added Coffee. Lwt, 154(October 2021), 112717. https://doi.org/10.1016/j.lwt.2021.112717.

Purwoko, T., Suranto, Setyaningsih, R., and Marliyana, S. D., 2023. Caffeine Degradation by Food Microorganisms. Biodiversitas, 24(6), 3495–3502. https://doi.org/10.13057/biodiv/d240647.

Putri, S. P., Jumhawan, U., and Fukusaki, E., 2015. Application of GC / MS and GC / FID-based Metabolomics for Authentication of Asian Palm Civet Coffee ( Kopi Luwak). Metabolomics, 34-41.

Redgwell, R., and Fischer, M., 2006. Coffee carbohydrates. Brazilian Journal of Plant Physiology, 18(1), 165–174. https://doi.org/10.1590/S1677-04202006000100012.

Sharma, R., Garg, P., Kumar, P., Bhatia, S. K., and Kulshrestha, S., 2020. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation, 6(4), 1–20. https://doi.org/10.3390/fermentation6040106.

Sipayung, S. M., Rai Widarta, I. W., and Kartika Pratiwi, I. D. P., 2019. Pengaruh Lama Fermentasi Oleh Bacillus subtilis Terhadap Karakteristik Sere Kedele. Jurnal Ilmu Dan Teknologi Pangan (ITEPA), 8(3), 226–231. https://doi.org/10.24843/itepa.2019.v08.i03.p01.

SNI. (2014). Kopi Instan (Standar Na). http://sispk.bsn.go.id/SNI/DetailSNI/9568.

Somporn, C., Kamtuo, A., Theerakulpisut, P., and Siriamornpun, S., 2011. Effects of Roasting Degree on Radical Scavenging Activity, Phenolics and Volatile Compounds of Arabica Coffee Beans (Coffea arabica L. cv. Catimor). International Journal of Food Science and Technology, 46(11), 2287–2296. https://doi.org/10.1111/j.1365-2621.2011.02748.x.

Su, Y., Li, H., Hu, Z., Zhang, Y., Guo, L., Shao, M., Man, C., and Jiang, Y. (2023). Research on Degradation of Polysaccharides During Hericium erinaceus Fermentation. LWT - Food Science and Technology, 173(November 2022), 114276. https://doi.org/10.1016/j.lwt.2022.114276.

Towaha, J., and Rubiyo, R., 2016. Physical Quality and Flavor of Arabica Coffee Beans Fermented by Probiotic Microbes from Civet Digestive System. Jurnal Tanaman Industri Dan Penyegar, 3(2), 61. https://doi.org/10.21082/jtidp.v3n2.2016.p61-70.

Uliyandari, M., Sumpono, S., and Muslim, C., 2021. The Effect of Civet Coffee Isolate and Time Fermentation on Robusta Coffee Protein Profiles. Journal of Physics: Conference Series, 1731(1). https://doi.org/10.1088/1742-6596/1731/1/012019.

Usman, D., Suprihadi, A., and Kusdiyantini, E., 2015. Fermentation of Robusta Coffee (Coffea canephora) using Lactic Acid Bacteria Isolate from Civet Feces with Long Fermentation Time. Jurnal Biologi, 4(3) 31‒40. https://ejournal3.undip.ac.id/index.php/biologi/article/view/19417

Wibowo, N. A., Mangunwardoyo, W., Santoso, T. J., and Yasman., 2021. Effect of Fermentation on Sensory Quality of Liberica Coffee Beans Inoculated with Bacteria from Saliva Arctictis Binturong Raffles, 1821. Biodiversitas, 22(9), 3922–3928. https://doi.org/10.13057/biodiv/d220938.

Zhang, K., Cheng, J., Hong, Q., Dong, W., Chen, X., Wu, G., and Zhang, Z., 2022. Identification of Changes in The Volatile Compounds of Robusta Coffee Beans During Drying Based on HS-SPME/GC-MS and E-Nose Analyses with The Aid of Chemometrics. Lwt, 161, 113317. https://doi.org/10.1016/j.lwt.2022.113317.

Refbacks

  • There are currently no refbacks.