Simulasi Inhibisi Aktivitas Enzim α-Amilase dan α-Glukosidase oleh Senyawa Bioaktif Mikroalga Spirulina platensis

Syafrizayanti Syafrizayanti, Adetya Putri, Marniati Salim, Arif Juliari Kusnanda

Abstract

Diabetes Melitus (DM) Tipe 2 merupakan penyakit dengan gejala hiperglikemia dengan jumlah kasus yang meningkat setiap harinya pada populasi dunia. Enzim yang berperan terkait DM Tipe 2 yaitu α-amilase dan α-glukosidase yang bertindak dalam menghidrolisis pati pada pankreas. Target terapi dalam pengobatan DM Tipe 2 yaitu penurunan reabsorpsi glukosa di usus dengan melakukan penghambatan enzim α-amilase dan α-glukosidase. Tujuan penelitian ini adalah untuk mencari senyawa bioaktif yang terkandung dalam ekstrak Spirulina platensis yang berpotensi menjadi inhibitor α-amilase dan α-glukosidase sebagai antidiabetes secara in silico. Metode yang digunakan berupa skrining senyawa aktif dari literatur, farmakokinetika dengan prediksi ADMET, Lipinski’s Rule of Five dan simulasi penambatan molekul dengan program MOE. Berdasarkan hasil skrining dan simulasi penambatan molekul menunjukkan bahwa senyawa 4-amino-benzoat dapat berikatan dengan enzim α-amilase dengan afinitas pengikatan sebesar -4,16 kcal.mol-1 dengan situs pengikatan dengan asam amino His 299 dan Asp 195, dan berikatan dengan enzim α-glukosidase dengan afinitas pengikatan sebesar -4,08 kcal.mol-1 dengan situs pengikatan dengan asam amino Asn 58 dan Arg 17. Hasil ini menunjukkan senyawa 4-amino-benzoat dari mikroalga Spirulina platensis dapat dijadikan sebagai kandidat bahan alami dalam pengobatan antidiabetes.

Inhibition Activity Simulation of α-Amylase and α-Glucosidase Enzyme by Bioactive Compounds of Microalgae Spirulina platensis. Diabetes Mellitus (DM) Type 2 is a disease with symptoms of hyperglycemia, in which its case number is increasing daily in the world population. Enzymes playing a role related to Type 2 DM, namely α-amylase and α-glucosidase, act in hydrolyzing starch in the pancreas. The therapeutic target in treating Type 2 DM is to decrease glucose reabsorption in the intestine by inhibiting the enzymes α-amylase and α-glucosidase. This study aimed to find bioactive compounds in Spirulina platensis extracts that can become α-amylase and α-glucosidase inhibitors as in silico antidiabetics. The method used was screening active compounds from the literature, pharmacokinetics with ADMET predictions, Lipinski’s Rule of Five, and molecular docking simulations with the MOE program. Based on the screening results and molecular docking simulations, it was shown that the 4-amino-benzoic compound could bind to the α-amylase enzyme with a binding affinity of -4.16 kcal.mol-1 with a binding site with the amino acids His 299 and Asp 195, and bind with the α-glucosidase enzyme with a binding affinity of -4.08 kcal.mol-1 with a binding site with the amino acids Asn 58 and Arg 17. These results show that the 4-amino-benzoic compound from Spirulina platensis microalgae can be a candidate for natural ingredients in antidiabetic treatment.

Keywords

α-amylase; α-glucosidase; DM; docking simulation; Spirulina platensis.

Full Text:

PDF

References

MOE, 2015. Molecular Operating Environment (MOE). Canada: Chemical Computing Group Inc.

Ahmed, W. S., A. Razzak Mahmood, A., and Al-Bayati, R. I., 2018. Synthesis and Evaluation of Antimicrobial Activity of New Imides and Schiff Bases Derived from Ethyl -4-Amino Benzoate. Oriental Journal of Chemistry, 34(5), 2477–2486. https://doi.org/10.13005/ojc/340533.

Alam, A., Quamri, S., Fatima, S., Roqaiya, M., and Ahmad, Z., 2016. Efficacy of Spirulina (Tahlab) in Patients of Type 2 Diabetes Mellitus (Ziabetus Shakri) - A Randomized Controlled Trial. Journal of Diabetes and Metabolism, 7(10). https://doi.org/10.4172/2155-6156.1000710.

Alam, F., Shafique, Z., Amjad, S. T., and bin Asad, M. H. H., 2019. Enzymes Inhibitors from Natural Sources with Antidiabetic Activity: A Review. Phytotherapy Research, 33(1), 41–54. https://doi.org/10.1002/ptr.6211.

Atlas, I. D. F. D., 2019. International Diabetes Federation, The Lancet. https://10.1016/S0140-6736(55)92135-8.

Brayer, G. D., Luo, Y., and Withers, S. G., 1995. The Structure Of Human Pancreatic Α -Amylase at 1.8 Å Resolution and Comparisons With Related Enzymes. Protein Science, 4(9), 1730–1742. https://doi.org/10.1002/pro.5560040908.

Farouk, K. E., Aly, H. F., and Mohamed, A. A., 2013. Role of Spirulina Platensis in The Control of Glycemia in DM2 rats. International Journal of Scientific and Engineering Research, 4(12), 1731–1740 . <http://www.ijser.org>.

Francenia Santos-Sánchez, N., Salas-Coronado, R., Villanueva-Cañongo, C., and Hernández-Carlos, B., 2019. Antioxidant Compounds and Their Antioxidant Mechanism. In Antioxidants. IntechOpen. https://doi.org/10.5772/intechopen.85270.

Gheda, S. F., Abo-Shady, A. M., Abdel-Karim, O. H., and Ismail, G. A., 2021. Antioxidant and Antihyperglycemic Activity of Arthrospira Platensis (Spirulina platensis) Methanolic Extract: In vitro and In vivo Study. Egyptian Journal of Botany, 61(1), 71–093. https://doi.org/10.21608/ejbo.2020.27436.1482.

González-Montoya, M., Hernández-Ledesma, B., Mora-Escobedo, R., and Martínez-Villaluenga, C., 2018. Bioactive Peptides from Germinated Soybean with Antidiabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes. International Journal of Molecular Sciences, 19(10), 2883. https://doi.org/10.3390/ijms19102883.

Gouveia, L., Marques, A. E., Sousa, J. M., Moura, P., and Bandarra, N. M., 2010. Microalgae – Source of Natural Bioactive Molecules as Functional Ingredients. Food Science and Technology Bulletin: Functional Foods, 7(2), 21–37. https://doi.org/10.1616/1476-2137.15884.

Hasan, A. E. Z., Andrianto, D., and Rosyidah, R. A., 2022. Uji Penghambatan α-Glukosidase dari Kombinasi Ekstrak Kunyit, Teh Hitam dan Jahe. Jurnal Agroindustri Halal, 8(1), 137–146. https://doi.org/10.30997/jah.v8i1.5608.

Hussein, R. A., Salama, A. A. A., el Naggar, M. E., and Ali, G. H., 2019. Medicinal Impact of Microalgae Collected from High Rate Algal Ponds; Phytochemical and Pharmacological Studies of Microalgae and Its Application In Medicated Bandages. Biocatalysis and Agricultural Biotechnology, 20, 101237. https://doi.org/10.1016/j.bcab.2019.101237.

Ivanović, V., Rančić, M., Arsić, B., and Pavlović, A., 2020. Lipinski’s Rule of Five, Famous Extensions and Famous Exceptions. In Popular Scientific Article, 3(1), 171–177. <Ivanovic et al., 2020, tekst.pdf (ni.ac.rs)>.

Jhong, C.-H., Riyaphan, J., Lin, S.-H., Chia, Y.-C., and Weng, C.-F., 2015. Screening Alpha-Glucosidase and Alpha-Amylase Inhibitors from Natural Compounds by Molecular Docking In Silico. BioFactors, 41(4), 242–251. https://doi.org/10.1002/biof.1219.

Kalinichenko, E., Faryna, A., Kondrateva, V., Vlasova, A., Shevchenko, V., Melnik, A., Avdoshko, O., and Belko, A., 2019. Synthesis, Biological Activities and Docking Studies of Novel 4-(Arylaminomethyl)benzamide Derivatives as Potential Tyrosine Kinase Inhibitors. Molecules, 24(19), 1–25. https://doi.org/10.3390/molecules24193543.

Laoufi, H., Benariba, N., Adjdir, S., and Djaziri, R., 2017. In vitro α-amylase and α-glucosidase Inhibitory Activity of Ononis Angustissima Extracts. Journal of Applied Pharmaceutical Science, 7(2), 191–198. https://doi.org/10.7324/JAPS.2017.70227.

Listyani, T. A., and Herowati, R., 2018. Analisis Docking Molekuler Senyawa Derivat Phthalimide sebagai Inhibitor Non-Nukleosida HIV-1 Reverse Transcriptase. Jurnal Farmasi Indonesia, 15(2), 123–134. https://doi.org/10.31001/jfi.v15i2.445.

Chan, M., 2016. Global Report on Diabetes, Isbn, 978. 6–86. Available at: <Global report on diabetes (who.int)>. Diakses pada 9 April 2023 Pukul 23.00 WIB.

Mane, R. S., and Chakraborty, B., 2019 . Phytochemical screening of Spirulina platensis extracts from Rankala Lake Kolhapur, India. Journal of Algal Biomass Utilization 38–41 <cdd9a44e36e605af71a0112af36e7801.pdf (unitedwebnetwork.com)>.

Mardianingrum, R., Bachtiar, K. R., Susanti, S., Aas Nuraisah, A. N., and Ruswanto, R., 2021 . Studi In Silico Senyawa 1,4-Naphthalenedione-2-Ethyl-3-Hydroxy sebagai Antiinflamasi dan Antikanker Payudara. ALCHEMY Jurnal Penelitian Kimia, 17(1), 83. https://doi.org/10.20961/alchemy.17.1.43979.83-95.

Mohammadi-Khanaposhtani, M., Rezaei, S., Khalifeh, R., Imanparast, S., Faramarzi, M. A., Bahadorikhalili, S., Safavi, M., Bandarian, F., Nasli Esfahani, E., Mahdavi, M., and Larijani, B., 2018. Design, Synthesis, Docking Study, α-glucosidase Inhibition, and Cytotoxic Activities of Acridine Linked to Thioacetamides as Novel Agents in Treatment of Type 2 Diabetes. Bioorganic Chemistry, 80, 288–295. https://doi.org/10.1016/j.bioorg.2018.06.035.

Nurlelasari N., Widyana, A., Julaeha, E., Hardianto, A., Huspa, D. H. P., Maharani, R., Mayanti, T., Darwati, D., Hanafi, M., and Supratman, U., 2023. Studi In Silico Aktivitas Senyawa Steroid Terhadap Antikanker Payudara Menggunakan Estrogen Alfa (ER-α). ALCHEMY Jurnal Penelitian Kimia, 19(1), 44–52. https://doi.org/10.20961/alchemy.19.1.62384.44-52.

Olaokun, O. O., Alaba, A. E., Ligege, K., and Mkolo, N. M., 2020. Phytochemical Content, Antidiabetes, Anti-Inflammatory Antioxidant and Cytotoxic Activity of Leaf Extracts of Elephantorrhiza elephantina (Burch.) Skeels. South African Journal of Botany, 128, 319–325. https://doi.org/10.1016/j.sajb.2019.11.030.

Oyedemi, S. O., Oyedemi, B. O., Ijeh, I. I., Ohanyerem, P. E., Coopoosamy, R. M., and Aiyegoro, O. A., 2017. Alpha-Amylase Inhibition and Antioxidative Capacity of Some Antidiabetic Plants Used by the Traditional Healers in Southeastern Nigeria. The Scientific World Journal, 2017, 1–11. https://doi.org/10.1155/2017/3592491.

Pandey, J. P., Tiwari, A., Mishra, G., and Mishra, R. M., 2011. Role of Spirulina Maxima in The Control of Blood Glucose Levels And Body Weight Role in Streptozotocin Induced Diabetic Male Wistar Rats, Journal of Algal Biomass Utilization,2(4), 35–37 <https://www.researchgate.net/publication/299597352>

Pankaj, M., 2007. Diabetes Beyond Insulin: Review of New Drugs for Treatment of Diabetes Mellitus. Current Drug Discovery Technologies, 4(1), 39–47. https://doi.org/10.2174/157016307781115476.

Priani, S. E. and Fakih, T. M., 2021. Identifikasi Aktivitas Inhibitor Enzim Tirosinase Senyawa Turunan Flavonoid pada Kulit Buah Cokelat (Theobroma cacao L) secara In Silico. ALCHEMY Jurnal Penelitian Kimia, 17(2), 168. https://doi.org/10.20961/alchemy.17.2.45317.168-176.

Ren, L. Qin, X., Cao, X., Wang, L., Bai, F., Bai, G., and Shen, Y., 2011. Structural Insight Into Substrate Specificity of Human Intestinal Maltase-Glucoamylase. Protein and Cell, 2(10), 827–836. https://doi.org/10.1007/s13238-011-1105-3.

Ripa, S. A., Binthe Aziz, F., Islam, R., Mahmudul Hasan, M., Misrat Masuma Parvez, M., Lipi, T., Jubayar, M., and Chandro Roy, M., 2018. Antidiabetic effect of Spirulina (Spirulina Platensis) in Alloxan Induced Rabbit Model. International Journal of Natural and Social Sciences, 5(4), 48–53. <www.ijnss.org>.

Sadek, K. M., Lebda, M. A., Nasr, S. M., and Shoukry, M., 2017. Spirulina Platensis Prevents Hyperglycemia in Rats by Modulating Gluconeogenesis and Apoptosis Via Modification of Oxidative Stress and MAPK-Pathways. Biomedicine and Pharmacotherapy, 92, 1085–1094. https://doi.org/10.1016/j.biopha.2017.06.023.

Saputri, K. E., Fakhmi, N., Kusumaningtyas, E., Priyatama, D., and Santoso, B., 2016. Docking Molekular Potensi Anti Diabetes Melitus Tipe 2 Turunan Zerumbon Sebagai Inhibitor Aldosa Reduktase dengan Autodock-Vina. Chimica et Natura Acta, 4(1), 16. https://doi.org/10.24198/cna.v4.n1.10443.

Scaglioni, P. T., Quadros, L., de Paula, M., Furlong, V. B., Abreu, P. C., and Badiale-Furlong, E., 2018. Inhibition of Enzymatic and Oxidative Process by Phenolic Extracts from Spirulina sp. and Nannochloropsis sp. Food Technology and Biotechnology, 56(3). https://doi.org/10.17113/ftb.56.03.18.5495.

Siddique, M. H., Ashraf, A., Hayat, S., Aslam, B., Fakhar-e-Alam, M., Muzammil, S., Atif, M., Shahid, M., Shafeeq, S., Afzal, M., and Ahmad, S., 2022. Antidiabetic and Antioxidant Potentials of Abelmoschus Esculentus: In vitro Combined with Molecular Docking Approach. Journal of Saudi Chemical Society, 26(2), 101418. https://doi.org/10.1016/j.jscs.2021.101418.

Siti H., M., H., Gumilar, G. G., Nurjanah, F., Yuliani, G., Aisyah, S., Kurnia, D., Wulandari, A. P., Kurniawan, I., Ningrum, A., Koyande, A. K., and Show, P.-L., 2020. In-vitro Molecular Docking Analysis of Microalgae Extracted Phycocyanin as an Antidiabetic Candidate. Biochemical Engineering Journal, 161, 107666. https://doi.org/10.1016/j.bej.2020.107666.

Syafrizayanti, Rama, A., and Salim, E., 2022. A Molecular Screening of HER2 Inhibitors from Curcuma zedoaria. 070007. https://doi.org/10.1063/5.0104024.

Vijay, U., Gupta, S., Mathur, P., Suravajhala, P., and Bhatnagar, P., 2018. Microbial Mutagenicity Assay: Ames Test. BIO-PROTOCOL, 8(6). https://doi.org/10.21769/BioProtoc.2763.

Weni, M., Safithri, M., and Seno, D. S. H., 2020. Molecular Docking of Active Compounds Piper crocatum on the A-Glucosidase Enzyme as Antidiabetic. Indonesian Journal of Pharmaceutical Science and Technology, 7(2), 64. https://doi.org/10.24198/ijpst.v7i2.21120.

Refbacks

  • There are currently no refbacks.