Sintesis Material Katoda LiNi0,8Mn0,1Co0,1O2 (NMC811) dengan Metode Solid State Menggunakan Nikel Hasil Perolehan Kembali dari Spent Nickel Catalyst

Hendri Widiyandari, Rizqia Afifatu Latifah, Arif Jumari, Cornelius Satria Yudha, Shofirul Sholikhatun Nisa

Abstract

Penelitian mengenai sintesis material katoda LiNi0,8Mn0,1Co0,1O2 (NMC811) menggunakan nikel hasil perolehan kembali dari spent nickel catalyst telah berhasil dilakukan menggunakan metode solid state dengan variasi perbandingan padatan spent nickel catalyst/larutan (padatan/larutan) yang digunakan untuk leaching spent nickel catalyst sebesar (20 g/L, 30 g/L, dan 40 g/L). Proses leaching dilakukan menggunakan asam laktat 2 M selama 3 jam dengan suhu 80 ℃. Hasil dari proses ini adalah filtrat nikel laktat dengan endapan sebanyak 1,50 gram, 6,10 gram, dan 9,26 gram. Dalam filtrat tersebut terdapat ikatan hidroksida dan ikatan asam karboksilat. Material katoda NMC811 yang terbentuk memiliki enam puncak difraksi. Puncak difraksi X-ray tertinggi terdapat pada 2 theta 15° ‒ 20° dan 44°. Morfologi permukaan dari material katoda NMC811 menunjukkan terbentuknya partikel yang irregular dengan ukuran yang tidak seragam. Komposisi material katoda menunjukkan bahwa katoda NMC811 berhasil diperoleh dengan kandungan nikel sebanyak 73% ‒ 79%, mangan sebanyak 9% ‒ 13% dan kobalt sebanyak 10% ‒ 13%. Baterai lithium-ion yang dibuat menggunakan katoda NMC811 tersebut memiliki kapasitas masing-masing dengan variasi 20g/L sebesar 15,09 mAh/g, 30 g/L sebesar 28,42 mAh/g dan 40 g/L sebesar 25,57 mAh/g. 

Synthesis of LiNi0,8Mn0,1Co0,1O2 (NMC811) Cathode Material by Solid State Method Using Nickel Recovered from Spent Nickel Catalyst. Research on the synthesis of NMC811 cathode using nickel recovered from spent nickel catalyst was successfully carried out using the solid-state method with various ratios of solids spent nickel catalyst/solution used for leaching spent nickel catalyst (20 g/L, 30 g/L, and 40 g/L). The leaching process was carried out using 2 M lactic acid for 3 hours at a temperature of 80℃. The result of this process is lactic nickel filtrate with a precipitate of 1.50 grams, 6.10 grams, and 9.26 grams. There are hydroxide bonds and carboxylic bonds in the filtrate. The NMC811 cathode material formed has six diffraction peaks. The highest X-ray diffraction peak is at 2-theta of 15° ‒ 20° and 2-theta of 44°. The surface morphology of the NMC811 cathode material shows the formation of several lumps of non-uniform size. The composition of the cathode material shows that the NMC811 cathode has a nickel content of 73% ‒ 79%, manganese of 9% ‒ 13%, and cobalt of 10% ‒ 13%. The lithium-ion battery made using the NMC811 cathode has a capacity of 20g/L at 15.09 mAh/g, 30 g/L at 28.42 mAh/g, and 40 g/L at 25.57 mAh/g.

Keywords

battery; cathode; NMC811; solid state; spent nickel catalyst

Full Text:

PDF

References

Astuti, W., Prilitasari, N. M., Iskandar, Y., Bratakusuma, D., and Petrus, H. T. B. M. 2018. Leaching Behavior of Lanthanum, Nickel and Iron From Spent Catalyst Using Inorganic Acids. IOP Conference Series: Materials Science and Engineering, 285(1). https://doi.org/10.1088/1757-899X/285/1/012007

Febriani, S. S., Yolanda, T., Arianti, V. A., and Zainul, R. 2018. A Review Solid Stated : Principles and Methode. Review, 49. https://doi.org/10.31227/osf.io/7us4x

Hakam, M., Dharmawan, A., Arinawati, M., Purwanto, A., and Yudha, C. S. 2022. Sintesis dan Analisis Struktur Prekursor NMC811 dari Mix Hydroxide Precipitate (MHP) dengan Presipitan Asam Oksalat. Equilibrium Journal of Chemical Engineering, 5(2), 111–115. https://doi.org/10.20961/equilibrium.v5i2.58478

Widiyandari, H., Ardiansah, R., and Wijareni, A. S. 2020. [doi 10.1063_5.0000664] AIP Conference Proceedings [AIP Publishing the 5th international conference on industrial, MEC.pdf. 030023.

Li, L., Fan, E., Guan, Y., Zhang, X., Xue, Q., Wei, L., Wu, F., and Chen, R. 2017. Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System. ACS Sustainable Chemistry and Engineering, 5(6), 5224–5233. https://doi.org/10.1021/acssuschemeng.7b00571

Nafish, A. R., Salsabila, C. S., Ayu, M. P., Prawira, L. P. D. I., Amananti, K. S., and Yuliusman. 2020. Recovery of Ni Metal from Hydrotreating Spent Catalyst with Organic Acid Leaching and the Kinetics Study. AIP Conference Proceedings, 2255(September). https://doi.org/10.1063/5.0014692

Nisa, S. S., Nurohmah, A. R., Yudha, C. S., Nilasary, H., Nursukatmo, H., Dyartanti, E. R., and Purwanto, A. (2021). Utilization of Spent Nickel Catalyst as Raw Material for Ni-Rich Cathode Material. Jurnal Presipitasi : Media Komunikasi Dan Pengembangan Teknik Lingkungan, 18(2), 349–357. https://doi.org/10.14710/presipitasi.v18i2.349-357

Rahmayetty, R. D., Irawan, A., Suhendi, E., Prasetya, B., and Gozan, M. 2016. Sintesis Polilaktida (Pla) dari Asam Laktat dengan Metode Polimerisasi Pembukaan Cincin Menggunakan Katalis Lipase. Jurnal UMJ, November, 1–9.

Tang, L., Cheng, X., Wu, R., Cao, T., Lu, J., Zhang, Y., and Zhang, Z. 2022. Monitoring the Morphology Evolution of LiNi0.8Mn0.1Co0.1O2 during High-Temperature Solid State Synthesis via In Situ SEM. Journal of Energy Chemistry, 66, 9–15. https://doi.org/10.1016/j.jechem.2021.07.021

Tsai, Y. T., Wu, C. Y., and Duh, J. G. 2021. Synthesis of Ni-rich NMC Cathode Material by Redox-Assisted Deposition Method for Lithium Ion Batteries. Electrochimica Acta, 381. https://doi.org/10.1016/j.electacta.2021.138244

Wood, M., Li, J., Ruther, R. E., Du, Z., Self, E. C., Meyer, H. M., Daniel, C., Belharouak, I., and Wood, D. L. 2020. Chemical Stability and Long-Term Cell Performance of Low-Cobalt, Ni-Rich Cathodes Prepared by Aqueous Processing for High-Energy Li-Ion Batteries. Energy Storage Materials, 24(May 2019), 188–197. https://doi.org/10.1016/j.ensm.2019.08.020

Refbacks

  • There are currently no refbacks.