Pengaruh Perlakuan Awal Ampas Biji Jewawut (Setaria italica L.) dengan Microwave Irradiation Untuk Produksi Bioetanol

Sefrinus Maria Dolfi Kolo, Noviana Mery Obenu, Natalia Tige Rohy

Abstract

Produksi energi terbarukan termasuk bioetanol menjadi alternatif penganti bahan bakar fosil. Salah satunya dari ampas jewawut karena memiliki kandungan selulosa sebesar 32,41% sehingga sangat potensial dan ekonomis sebagai sumber energi baru terbarukan. Penelitian ini bertujuan mengetahui morfologi permukaan, suhu dan konsentrasi H2SO4 optimum pada proses hidrolisis menggunakan microwave dan kadar bioetanol dari hidrolisat ampas biji jewawut. Penelitian ini terdiri atas empat tahapan yaitu proses hidrolisis menggunakan microwave, fermentasi, distilasi dan pengujian kadar bioetanol baik secara kualitatif maupun kuantitatif menggunakan metode berat jenis dan kromatografi gas. Hidrolisis dilakukan melalui variasi suhu 75℃, 100℃, 125℃, 150℃, dan 175℃ dan konsentrasi H2SO4 0,5%, 1%, 2%, 5% dan 7%. Hasil penelitian menunjukkan bahwa morfologi permukaan sampel sebelum hidrolisis memiliki permukaan yang datar, kasar dan kaku namun setelah dihidrolisis permukaan sampel menjadi rapuh dan halus. Analisa gula pereduksi menggunakan pereaksi DNS (Dinitrosalisilat) diperoleh suhu optimum microwave yaitu pada suhu 150℃ dengan kadar gula pereduksi sebesar 25,3 g/L dan konsentrasi H2SO4 optimum pada 5% dengan kadar gula pereduksi sebesar 32,8 g/L. Uji kualitatif dari hasil fermentasi dan distilasi menunjukkan pada sampel mengandung bioetanol yang ditandai dengan terjadinya perubahan warna kalium dikromat dari warna jingga menjadi hijau kebiruan. Kadar bioetanol yang diperoleh dengan metode berat jenis sebesar 5% dan 6,08% dari analisa dengan kromatografi gas.

Pretreatment Effect of Barley Seed Dregs (Setaria italica L.) with Microwave Irradiation for Bioethanol Production. Renewable energy production, including bioethanol, is an alternative to fossil fuels. One of the alternative sources is barley dregs because it has a cellulose content of 32.41%; thus, it is very potential and economical as a new renewable energy source. This study aims to determine the surface morphology, temperature, and optimum H2SO4 concentration in the hydrolysis process using a microwave and the bioethanol content of the hydrolyzed barley seed dregs. The research comprised four steps: hydrolysis, fermentation, distillation, and qualitatively and quantitatively analysis of bioethanol levels using specific gravity and gas chromatography methods. Hydrolysis was carried out by varying the temperature of 75℃, 100℃, 125℃, 150℃, and 175℃, and the concentration of H2SO4 was 0.5%, 1%, 2%, 5%, and 7%. The results showed that the surface morphology of the sample before hydrolysis had a flat, rough and rigid surface; however, after hydrolysis, the sample's surface became brittle and smooth. Analysis of reducing sugar using DNS reagent (dinitrosalicylate) obtained the optimum microwave temperature at 150℃ with a reducing sugar content of 25.3 g/L and an optimum concentration of H2SO4 at 5% with a reducing sugar content of 32.8 g/L. The qualitative test of the fermentation and distillation results shows the samples containing bioethanol marked by the changes in potassium dichromate colors from orange to bluish-green. The bioethanol content obtained by the specific gravity method was 5% and 6.08% from analysis by gas chromatography.

Keywords

barley dregs; bioethanol; fermentation; hydrolysis; microwave.

Full Text:

PDF

References

Anggraini, A., Yuningsih, S., and Sota, M.M. 2017. Pengaruh PH Terhadap Kualitas Produk Etanol. J. Reka Buana, 2, 99–105.

Ansar, Nazaruddin, Azis, A.D., and Fudholi, A. 2021. Enhancement of Bioethanol Production from Palm Sap (Arenga Pinnata (Wurmb) Merr) through Optimization of Saccharomyces Cerevisiae as an Inoculum. Journal of Materials Research and Technology, 14, 548–554. https://doi.org/10.1016/j.jmrt.2021.06.085

Arifwan, Erwin, and Kartika, R. 2016. Pembuatan Bioetanol Dari Singkong Karet (Manihot Glaziovii Muell) Dengan Hidrolisis Enzimatik Dan Difermentasi Menggunakan Saccharomyces Cerevisiae. Jurnal Atomik, 01, 10–12.

Bahroni and Istianah. 2017. Pemanfaatan Buah Berenuk (Crescentia Cujete Linn) Sebagai Bahan Baku Pembuatan Biotenaol. Uin Syarif Hidayatullah Jakarta, 1–7. https://doi.org/10.17605/OSF.IO/2KXCV

Bangoura, M.L., Ming, Z.H., Nsor-Atindana, J., Xue, Z.K., Tolno, M.B., and Wei, P. 2011. Extraction and Fractionation of Insoluble Fibers from Foxtail Millet (Setaria Italica (L.) P. Beauv). American Journal of Food Technology,. https://doi.org/10.3923/ajft.2011.1034.1044

Bilyartinus, G., and Siswanto, A.P. 2021. The Effect of Bacillus Subtilis on Bioethanol Production from Ambon Banana (Musa Paradisiaca Var. Sapientum Linn) Peels by Using Fermentation Process. Journal of Vocational Studies on Applied Research, 3, 26–30. https://doi.org/10.14710/jvsar.v3i2.11081

Purba, D.E.H., Suprihatin, I.E., and Laksmiwati, A.A.I.A.M. 2016. Pembuatan Bioetanol Dari Kupasan Kentang (Solanum Tuberosum L.) Dengan Proses Fermentasi. Jurnal Kimia, 10, 155–160. https://doi.org/10.24843/jchem.2016.v10.i01.p21

Hildayanti. 2012. Studi Pembuatan Flakes Jewawut ( Setaria italica ). Skripsi,.

Kolo, S.M.D., Obenu, N.M., and Tuas, M.Y.C. 2022a. Pengaruh Pretreatment Makroalga Ulva Reticulata Menggunakan Microwave Irradiation Untuk Produksi Bioetanol. Jurnal Kimia, 16, 212. https://doi.org/10.24843/jchem.2022.v16.i02.p12

Kolo, S.M.D., Pardosi, L., and Baru, A.E. 2022b. The Effect of Hydrolysis Time Using Microwave on Bioethanol Production from Sorghum Waste (Sorghum Bicolor L.). Jurnal Sains dan Terapan Kimia, 16, 28. https://doi.org/10.20527/jstk.v16i1.11404

Kolo, S.M.D., Presson, J., and Amfotis, P. 2021. Produksi Bioetanol Sebagai Energi Terbarukan Dari Rumput Laut Ulva Reticulata Asal Pulau Timor. ALCHEMY Jurnal Penelitian Kimia, 17, 159. https://doi.org/10.20961/alchemy.17.2.45476.159-167

Kolo, S.M.D., Wahyuningrum, D., and Hertadi, R. 2020. The Effects of Microwave-Assisted Pretreatment and Cofermentation on Bioethanol Production from Elephant Grass. International Journal of Microbiology, 2020, 1–11. https://doi.org/10.1155/2020/6562730

Maceiras, R., Alfonsín, V., Seguí, L., and González, J.F. 2021. Microwave Assisted Alkaline Pretreatment of Algae Waste in the Production of Cellulosic Bioethanol. Energies, 14, 1–10. https://doi.org/10.3390/en14185891

Mikulski, D., and Kłosowski, G. 2020. Microwave-Assisted Dilute Acid Pretreatment in Bioethanol Production from Wheat and Rye Stillages. Biomass and Bioenergy, 136, 1–9. https://doi.org/10.1016/j.biombioe.2020.105528

Phuong, N.T., and Huu, N. 2014. Study on Ethanol Fermentation Conditions from Molasses by Thermo-Tolerant Yeasts. International Journal of Business and Applied Science www.ibasnet.com, 1, 13–22.

Putra, I.W.A.P., Kartika, R., and Panggabean, A.S. 2017. Pembuatan Bioetanol Dari Biji Jewawut (Setaria Italica) Dengan Proses Hidrolisis Enzimatis Dan Fermentasi Oleh Saccharomyces cerevisiae. Jurnal Kimia Mulawarman, 14, 77–83.

Rini, D.S. 2018. Potensi Aksesi Lokal Jewawut (Setaria Italica (L.) P. Beauv) Sebagai Pangan Alternatif Di Lahan Kering Pulau Sumba NTT. Seminar Nasional Pendidikan Biologi dan Saintek III, 2010, 558–564.

Sadimo, M.M., Said, I., and Mustapa, K. 2017. Pembuatan Bioetanol Dari Pati Umbi Talas (Colocasia Esculenta [L] Schott) Melalui Hidrolisis Asam Dan Fermentasi. Jurnal Akademika Kimia, 5, 79. https://doi.org/10.22487/j24775185.2016.v5.i2.8016

Solikha, D.F. 2017. Analisis Kandungan P-Xilena Pada Pertamax Dan Pertamax Plus Dengan Teknik Kromatografi Gas (GC-PU 4600) Menggunakan Standar Internal. Jurnal Ilmiah Indonesia, 2, 1–15.

Windarti, A., Novia, and Rosmawati. 2014. Pembuatan Bioetanol Dari Jerami Padi Dengan Metode Ozonolisis-Simultaneous an Fermentation (SSF) –. Jurnal Teknik Kimia, 20, 38–48.

Yoricya, G., Aisyah, S., Dalimunthe, P., Manurung, R., and Bangun, N. 2016. Kelapa Sawit Dalam Sistem Cairan Ionik. Jurnal Teknik Kimia, 5, 1–7.

Zhou, C., Zhao, J., Yagoub, A.E.G.A., Ma, H., Yu, X., Hu, J., Bao, X., and Liu, S. 2017. Conversion of Glucose into 5-Hydroxymethylfurfural in Different Solvents and Catalysts: Reaction Kinetics and Mechanism. Egyptian Journal of Petroleum, 26, 477–487. https://doi.org/10.1016/j.ejpe.2016.07.005

Ziaei, S.M., Mazloumzadeh, S.M., and Jabbary, M. 2015. A Comparison of Energy Use and Productivity of Wheat and Barley (Case Study). Journal of the Saudi Society of Agricultural Sciences, 14, 19–25. https://doi.org/10.1016/j.jssas.2013.04.002

Zoghlami, A., and Paës, G. 2019. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Frontiers in Chemistry, 7, 1–11. https://doi.org/10.3389/fchem.2019.00874

Refbacks

  • There are currently no refbacks.