Biosensor Elektrokimia untuk Memonitor Level Hemoglobin Terglikasi (HbA1c) pada Penyakit Diabetes Melitus

Sheila Destiani, Iman Permana Maksum, Yeni Wahyuni Hartati

Abstract

Hiperglikemia merupakan ciri diabetes melitus, sekelompok penyakit metabolik yang disebabkan oleh kelainan sekresi insulin, kerja insulin, atau keduanya. Hiperglikemia dapat menyebabkan kerusakan jangka panjang, disfungsi, dan kegagalan berbagai organ, terutama jantung, mata, saraf, pembuluh darah, dan ginjal. Oleh karena itu, diagnosis dan pemantauan rutin kadar glukosa darah sangat penting dilakukan. Hemoglobin terglikasi (HbA1c) adalah hemoglobin yang berikatan dengan glukosa dalam darah dan ditetapkan menjadi biomarker hiperglikemia yang dapat mengindikasikan diabetes atau prediabetes. Akan tetapi, pengukuran HbA1c di laboratorium klinis membutuhkan instrumen yang canggih dan mahal, tenaga ahli khusus dan waktu lama. Oleh karena itu, biosensor elektrokimia kemudian mulai dikembangkan untuk mendeteksi kadar HbA1c karena mudah digunakan, hasil cepat, dan harga yang murah. Ulasan ini membahas biosensor elektrokimia untuk mendeteksi HbA1c dan metode imobilisasi bioreseptor.

Electrochemical Biosensor for Monitoring Glycated Hemoglobin (HbA1c) Levels in Diabetes Mellitus. Hyperglycemia is a hallmark of diabetes mellitus,  a group of metabolic diseases caused by defects in insulin action, insulin secretion, or both. Hyperglycemia can cause long-term damage, dysfunction, and failure of various organs, especially the heart, blood vessels, eyes, nerves, and kidneys.. Therefore, routine diagnosis and monitoring of blood glucose levels are very important. Glycated hemoglobin (HbA1c) is hemoglobin that binds to glucose in the blood and is established as a biomarker of hyperglycemia that may indicate diabetes or prediabetes. However, measurement of HbA1c in the clinical laboratory requires large and expensive instruments, specialized experts, and takes a long time. Therefore, an electrochemical biosensor began to be developed to detect HbA1c levels because it is easy to use and has fast results at lower prices. This review discusses electrochemical biosensors for detecting HbA1c and the immobilization of bioreceptors. 

Keywords

biosensors; diabetes mellitus; electrochemical; HbA1c.

Full Text:

PDF

References

Abass, A. E., Musa, I. R., Rayis, D. A., Adam, I., and Gasim, G. I. 2017. Glycated Hemoglobin and Red Blood Cell Indices in Non-diabetic Pregnant Women. Clinics and Practice, 7(4), 137–140. https://doi.org/10.4081/cp.2017.999.

Ahmadi, A., Kabiri, S., and Omidfar, K. 2020. Advances in HbA1c Biosensor Development Based on Field Effect Transistors: A Review. IEEE Sensors Journal, 20(16), 8912–8921. https://doi.org/10.1109/JSEN.2020.2987836.

Ahmadi, A., Khoshfetrat, S. M., Kabiri, S., Dorraji, P. S., Larijani, B., and Omidfar, K. 2021. Electrochemiluminescence Paper-Based Screen-Printed Electrode for Hba1c Detection Using Two-Dimensional Zirconium Metal-Organic Framework/Fe3O4 Nanosheet Composites Decorated with Au Nanoclusters. Microchimica Acta, 188(9). https://doi.org/10.1007/s00604-021-04959-y.

Almusharraf, A. Y., Eissa, S., and Zourob, M. 2018. Truncated Aptamers for Total and Glycated Hemoglobin, and Their Integration Into a Graphene Oxide-Based Fluorometric Method for High-Throughput Screening for Diabetes. Microchimica Acta, 185(5), 1–8. https://doi.org/10.1007/s00604-018-2789-3.

American Diabetes Association. 2014. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 37(SUPPL.1), 81–90. https://doi.org/10.2337/dc14-S081.

Association American Diabetes. 2005. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 28.

Bhatt, H., Saklani, S., and Upadhayay, K. 2016. Anti-Oxidant and Anti-Diabetic Activities of Ethanolic Extract of Primula Denticulata Flowers. Indonesian Journal of Pharmacy, 27(2), 74–79. https://doi.org/10.14499/indonesianjpharm27iss2pp74.

Chauhan, N. 2017. Laboratory Diagnosis of HbA1c: A Review. Journal of Nanomedicine Research, Volume 5(Issue 4). https://doi.org/10.15406/JNMR.2017.05.00120.

Chen, H. H., Wu, C. H., Tsai, M. L., Huang, Y. J., and Chen, S. H. 2012. Detection of Total and A1c-Glycosylated Hemoglobin in Human Whole Blood Using Sandwich Immunoassays on Polydimethylsiloxane-Based Antibody Microarrays. Analytical Chemistry, 84(20), 8635–8641. https://doi.org/10.1021/ac301756d.

Cho, I. H., Kim, D. H., and Park, S. 2020. Electrochemical Biosensors: Perspective on Functional Nanomaterials for On-Site Analysis. Biomaterials Research 2020 24:1, 24(1), 1–12. https://doi.org/10.1186/S40824-019-0181-Y.

Dorledo de Faria, R. A., Messaddeq, Y., Heneine, G. D., and Matencio, T. 2019. Application of Screen-Printed Carbon Electrode as an Electrochemical Transducer in Biosensors. International Journal of Biosensors & Bioelectronics, 5(1). https://doi.org/10.15406/IJBSBE.2019.05.00143.

Dridi, F., Marrakchi, M., Gargouri, M., Saulnier, J., Jaffrezic-Renault, N., and Lagarde, F. 2017. Nanomaterial-Based Electrochemical Biosensors for Food Safety and Quality Assessment. Nanobiosensors, 167–204. https://doi.org/10.1016/b978-0-12-804301-1.00005-9.

Duanghathaipornsuk, S., Reaver, N. G. F., Cameron, B. D., and Kim, D. S. 2021. Adsorption Kinetics of Glycated Hemoglobin on Aptamer Microarrays with Antifouling Surface Modification. Langmuir, 37(15), 4647–4657. https://doi.org/10.1021/acs.langmuir.1c00446.

Eissa, S., Almusharraf, A. Y., and Zourob, M. 2019. A Comparison of the Performance of Voltammetric Aptasensors for Glycated Haemoglobin on Different Carbon Nanomaterials-Modified Screen Printed Electrodes. Materials Science and Engineering C, 101(March), 423–430. https://doi.org/10.1016/j.msec.2019.04.001.

Eissa, S., and Zourob, M. 2017. Aptamer- Based Label-Free Electrochemical Biosensor Array for the Detection of Total and Glycated Hemoglobin in Human Whole Blood /631/1647/350/59 /692/700/139/1420/1340 /9/10 /128 /120 Article. Scientific Reports, 7(1), 1–8. https://doi.org/10.1038/s41598-017-01226-0.

Fazrin, E. I., Naviardianti, A. I., Wyantuti, S., Gaffar, S., and Hartati, Y. W. 2020. Review: Sintesis Dan Karakterisasi Nanopartikel Emas (AuNP) Serta Konjugasi AuNP dengan DNA dalam Aplikasi Biosensor Elektrokimia. PENDIPA Journal of Science Education, 4(2), 21–39. https://doi.org/10.33369/pendipa.4.2.21-39.

Gaffar, S., Nurmalasari, R., Yohan, and Hartati, Y. W. 2017. Voltammetric DNA Biosensor Using Gold Electrode Modified by Self Assembled Monolayer of Thiol for Detection of Mycobacterium Tuberculosis. Procedia Technology, 27, 74–80. https://doi.org/10.1016/j.protcy.2017.04.034.

Gilani, M., Aamir, M., Akram, A., Haroon, Z. H., Ijaz, A., and Khadim, M. T. 2020. Comparison of Turbidimetric Inhibition Immunoassay, High-Performance Liquid Chromatography, and Capillary Electrophoresis Methods for Glycated Hemoglobin Determination. Lab Medicine, 51(6), 579–584. https://doi.org/10.1093/LABMED/LMAA010.

Goode, J. A., Rushworth, J. V. H., and Millner, P. A. 2015. Biosensor Regeneration: A Review of Common Techniques and Outcomes. Langmuir, 31(23), 6267–6276. https://doi.org/10.1021/la503533g.

Grieshaber, D., MacKenzie, R., Vörös, J., and Reimhult, E. 2008. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors, 8(3), 1400–1458. https://doi.org/10.3390/s8031400.

Gross, E. M., Maddipati, S. S., and Snyder, S. M. 2016. A Review of Electrogenerated Chemiluminescent Biosensors for Assays in Biological Matrices. Bioanalysis, 8(19), 2071. https://doi.org/10.4155/BIO-2016-0178.

Hartati, Y. W., Gaffar, S., Alfiani, D., Pratomo, U., Sofiatin, Y., and Subroto, T. 2020. A Voltammetric Immunosensor Based on Gold Nanoparticle - Anti-Enac Bioconjugate for the Detection of Epithelial Sodium Channel (Enac) Protein as a Biomarker of Hypertension. Sensing and Bio-Sensing Research, 29(February), 100343. https://doi.org/10.1016/j.sbsr.2020.100343.

Hartati, Y. W., Yusup, S. F., Fitrilawati, Wyantuti, S., Sofiatin, Y., and Gaffar, S. 2020. A Voltammetric Epithelial Sodium Channels Immunosensor Using Screen-Printed Carbon Electrode Modified with Reduced Graphene Oxide. Current Chemistry Letters, 9(4), 151–160. https://doi.org/10.5267/j.ccl.2020.2.001.

Harvey, D. 2020. 11.4: Voltammetric and Amperometric Methods - Chemistry LibreTexts. The LibreTexts Libraries, 285–289.

Haugland, R. P., & You, W. W. 2008. Coupling of Antibodies With Biotin. Methods in Molecular Biology (Clifton, N.J.), 418, 13–23. https://doi.org/10.1007/978-1-59745-579-4_2.

Indonesia, P. E. 2015. Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 di Indonesia. Pb. Perkeni. http://www.p2ptm.kemkes.go.id/kegiatan-p2ptm/subdit-penyakit-diabetes-melitus-dan-gangguan-metabolik/pencegahan-diabetes-melitus. (diakses tanggal 7 November 2021)

Jaberi, S. Y. S., Ghaffarinejad, A., and Omidinia, E. 2019. An Electrochemical Paper Based Nano-Genosensor Modified with Reduced Graphene Oxide-Gold Nanostructure for Determination of Glycated Hemoglobin in Blood. Analytica Chimica Acta, 1078(June), 42–52. https://doi.org/10.1016/j.aca.2019.06.018.

Jagannathan, R., Neves, J. S., Dorcely, B., Chung, S. T., Tamura, K., Rhee, M., and Bergman, M. 2020. The Oral Glucose Tolerance Test: 100 Years Later. https://doi.org/10.2147/DMSO.S246062.

Jaiswal, N., and Tiwari, I. 2017. Recent Build Outs in Electroanalytical Biosensors Based on Carbon-Nanomaterial Modified Screen Printed Electrode Platforms. Analytical Methods, 9(26), 3895–3907. https://doi.org/10.1039/c7ay01276d.

Karaşallı, M. Ö., and Zeybek, D. K. 2020. A Novel Label-Free Immunosensor Based on Electrochemically Reduced Graphene Oxide for Determination of Hemoglobin A 1c. Russian Journal of Electrochemistry, 56(9), 788–797. https://doi.org/10.1134/S1023193520090037.

Karunakaran, C., Rajkumar, R., and Bhargava, K. 2015. Introduction to Biosensors. In Biosensors and Bioelectronics (pp. 2–68). https://doi.org/10.1016/B978-0-12-803100-1.00001-3.

Khan, N. I., and Song, E. 2020. Lab-On-A-Chip Systems for Aptamer-Based Biosensing. Micromachines, 11(2), 1–30. https://doi.org/10.3390/mi11020220.

Kilpatrick, E. S., Rumley, A. G., Dominiczak, M. H., and Small, M. 1994. Glycated Haemoglobin Values: Problems in Assessing Blood Glucose Control in Diabetes Mellitus. BMJ : British Medical Journal, 309(6960), 983. https://doi.org/10.1136/BMJ.309.6960.983.

Kim, M., Iezzi, R., Shim, B. S., and Martin, D. C. 2019. Impedimetric Biosensors for Detecting Vascular Endothelial Growth Factor (VEGF) Based on Poly(3,4-Ethylene Dioxythiophene) (PEDOT)/Gold Nanoparticle (Au NP) Composites. Frontiers in Chemistry, 7(MAR), 234. https://doi.org/10.3389/FCHEM.2019.00234.

Koval, D., Kašička, V., and Cottet, H. 2011. Analysis of Glycated Hemoglobin A1c by Capillary Electrophoresis and Capillary Isoelectric Focusing. Analytical Biochemistry, 413(1), 8–15. https://doi.org/10.1016/J.AB.2011.01.048.

Lakshmy, R., and Gupta, R. 2009. Measurement of Glycated Hemoglobin A1c from Dried Blood by Turbidimetric Immunoassay. Journal of Diabetes Science and Technology, 3(5), 1203–1206. https://doi.org/10.1177/193229680900300527

Lan, Q., Shanhong, X., Chao, B., Jizhou, S., and Jinghong, H. 2009. A Micro-Potentiometric Hemoglobin Immunosensor Based on Electropolymerized Polypyrrole-Gold Nanoparticles Composite. Biosensors & Bioelectronics, 24(12), 3419–3424. https://doi.org/10.1016/J.BIOS.2008.07.077.

Lenters-Westra, E., Schindhelm, R. K., Bilo, H. J., and Slingerland, R. J. 2013. Hemoglobin A1c: Historical Overview and Current Concepts. Diabetes Research and Clinical Practice, 99(2), 75–84. https://doi.org/10.1016/j.diabres.2012.10.007.

Li, J., Chang, K. W., Wang, C. H., Yang, C. H., Shiesh, S. C., and Lee, G. Bin. 2016. On-Chip, Aptamer-Based Sandwich Assay for Detection of Glycated Hemoglobins Via Magnetic Beads. Biosensors and Bioelectronics, 79, 887–893. https://doi.org/10.1016/j.bios.2016.01.029.

Li, Z., Li, J., Dou, Y., Wang, L., and Song, S. 2021. A Carbon-Based Antifouling Nano-Biosensing Interface for. Biosensors, 11(118), 1–11. https://doi.org/10.3390/bios11040118.

Lim, W. Y., Ma, S., Heng, D., Tai, E. S., Khoo, C. M., and Loh, T. P. 2018. Screening For Diabetes with Hba1c: Test Performance of Hba1c Compared to Fasting Plasma Glucose Among Chinese, Malay and Indian Community Residents in Singapore. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-29998-z.

Lim, Y. C., Kouzani, A. Z., and Duan, W. 2010. Aptasensors: A Review. Journal of Biomedical Nanotechnology, 6(2), 93–105. https://doi.org/10.1166/jbn.2010.1103.

Lin, H., and Yi, J. 2017. Current Status of Hba1c Biosensors. Sensors (Switzerland), 17(8), 1–18. https://doi.org/10.3390/s17081798.

Liu, G., Iyengar, S. G., and Gooding, J. J. 2013. An Amperometric Immunosensor Based on a Gold Nanoparticle-Diazonium Salt Modified Sensing Interface for the Detection of Hba1c in Human Blood. Electroanalysis, 25(4), 881–887. https://doi.org/10.1002/elan.201200333.

Maksum, I., Natradisastra, G., Nuswantara, S., and Ngili, Y. 2013. The Effect of A3243G Mutation of Mitochondrial DNA to the Clinical Features of Type-2 Diabetes Mellitus and Cataract. European Journal of Scientific Research, 96(4), 591–599.

Maksum, I. P. 2020. Varian Genom Mitokondria Pada Pasien Diabetes Melitus Tipe 2 dan Katarak serta Kajian Pengaruh Mutasi Pada Varian Genom Secara In Silico (1st ed., Issue June). Unpad Press.

Marengo-Rowe, A. J. 2006. Structure-Function Relations of Human Hemoglobins. Baylor University Medical Center Proceedings, 19(3), 239–245. https://doi.org/10.1080/08998280.2006.11928171.

Molazemhosseini, A., Magagnin, L., Vena, P., and Liu, C. C. 2016. Single-Use Disposable Electrochemical Label-Free Immunosensor for Detection of Glycated Hemoglobin (Hba1c) Using Differential Pulse Voltammetry (DPV). Sensors (Switzerland), 16(7), 1–11. https://doi.org/10.3390/s16071024.

Mollarasouli, F., Kurbanoglu, S., and Ozkan, S. A. 2019. The Role of Electrochemical Immunosensors in Clinical Analysis. Biosensors, 9, 1–19. https://doi.org/10.3390/bios9030086.

Moon, J. M., Kim, D. M., Kim, M. H., Han, J. Y., Jung, D. K., and Shim, Y. B. 2017. A Disposable Amperometric Dual-Sensor For The Detection Of Hemoglobin And Glycated Hemoglobin In A Finger Prick Blood Sample. Biosensors and Bioelectronics, 91(December 2016), 128–135. https://doi.org/10.1016/j.bios.2016.12.038.

Morrison, D. W. G., Dokmeci, M. R., Demirci, U., & Khademhosseini, A. (2007). Clinical Applications of Micro- and Nanoscale Biosensors. Biomedical Nanostructures, 1, 439–460. https://doi.org/10.1002/9780470185834.ch17.

Muhammad, A. A. (2018). Resistensi Insulin Dan Disfungsi Sekresi Insulin Sebagai Faktor Penyebab Diabetes Melitus tipe 2. Jurnal Kesehatan Masyarakat, 8(2), 173–178.

Naresh, V., & Lee, N. (2021). A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Switzerland), 21(4), 1–35. https://doi.org/10.3390/s21041109.

Nirschl, M., Reuter, F., & Vörös, J. (2011). Review of transducer principles for label-free biomolecular interaction analysis. Biosensors, 1(3), 70–92. https://doi.org/10.3390/bios1030070.

Nitin, S. (2010). HbAIc and factors other than diabetes mellitus affecting it. Singapore Medical Journal, 51(8), 616–622.

Ogawa, N., Kimura, T., Umehara, F., Katayama, Y., Nagai, G., Suzuki, K., Aisaka, K., Maruyama, Y., Itoh, T., Hashimoto, W., Murata, K., dan Ichimura, M. 2019. Creation of Haemoglobin A1c Direct Oxidase from Fructosyl Peptide Oxidase by Combined Structure-Based Site Specific Mutagenesis and Random Mutagenesis. Scientific Reports 2019 9:1, 9(1), 1–13. https://doi.org/10.1038/s41598-018-37806-x.

Paputungan, S. R., and Sanusi, H. 2014. Peranan Pemeriksaan Hemoglobin A1c pada Pengelolaan Diabetes Melitus. Cdkjournal, 24(3), 90–94.

Park, J. Y., Chang, B. Y., Nam, H., and Park, S. M. 2008. Selective Electrochemical Sensing of Glycated Hemoglobin (Hba1c) on Thiophene-3-Boronic Acid Self-Assembled Monolayer Covered Gold Electrodes. Analytical Chemistry, 80(21), 8035–8044. https://doi.org/10.1021/ac8010439.

Pohanka, M. 2017. The Piezoelectric Biosensors: Principles and Applications, A Review. International Journal of Electrochemical Science, 12(1), 496–506. https://doi.org/10.20964/2017.01.44.

Ponsanti, K., Ngernyuang, N., Tangnorawich, B., Na-Bangchang, K., Boonprasert, K., Tasanarong, A., Saeheng, T., Hanwattanakula, A., and Pechyen, C. 2022. A Novel Electrochemical-Biosensor Microchip Based on MWCNTs/AuNPs for Detection of Glycated Hemoglobin (HbA1c) in Diabetes Patients. Journal of The Electrochemical Society. https://doi.org/10.1149/1945-7111/ac5c0a.

Rukmini, M. S., Ashritha, Nishmitha, P., Yalla, D., Christy, A., & Manjrekar, P. 2017. Analytical Calibre of High Performance Liquid Chromatography and Ion Exchange Chromatography Resin Methods in Estimation of Glycated Hemoglobin: A Comparitive Study. Biomedical Research (India), 28(4), 1765–1769.

Sacks, D. B. 2012. Measurement of Hemoglobin A1c: A New Twist on The Path to Harmony. Diabetes Care, 35(12), 2674–2680. https://doi.org/10.2337/dc12-1348.

Sheikholeslam, M., Pritzker, M. D., and Chen, P. 2011. Electrochemical Biosensor for Glycated Hemoglobin (HbA1c). Biosensors for Health, Environment and Biosecurity. https://doi.org/10.5772/18105.

Sherwani, S. I., Khan, H. A., Ekhzaimy, A., Masood, A., and Sakharkar, M. K. 2016. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. 11. https://doi.org/10.4137/Bmi.s38440.

Siregar, A. T. 2017. Perbandingan nilai glycated hemoglobin (HbA1c) dan glycated albumin (GA) pada pasien DM tipe 2 dengan PJK dan non PJK. Universitas Sumatera Utara.

Song, S., Wang, L., Li, J., Fan, C., and Zhao, J. 2008. Aptamer-Based Biosensors. TrAC - Trends in Analytical Chemistry, 27(2), 108–117. https://doi.org/10.1016/j.trac.2007.12.004.

Suryathi, ni made ari. 2015. Hemoglobin glikosilat yang tinggi meningkatkan prevalensi retinopati diabetik proliferatif. 1–92.

Tanaka, J., Ishige, Y., Iwata, R., Maekawa, B., Nakamura, H., Sawazaki, T., and Kamahori, M. 2018. Direct Detection for Concentration Ratio of Hba1c to Total Hemoglobin by Using Potentiometric Immunosensor with Simple Process of Denaturing Hba1c. Sensors and Actuators, B: Chemical, 260, 396–399. https://doi.org/10.1016/j.snb.2017.12.148.

Wang, J., Wang, Y., Lv, W., Yang, L., Huang, M., and Wang, Q. 2021. Hba Mutation Causing False‑Normal Hba1c Results Determined by HPLC in a Patient with Type 2 Diabetes Mellitus: A Case Report. Experimental and Therapeutic Medicine, 22(2), 1–4. https://doi.org/10.3892/etm.2021.10277.

Xu, J., Zhong, Z., and Deng, Y. 2021. Unexpected Hba1c Results in the Presence of Three Rare Hemoglobin Variants. Scandinavian Journal of Clinical and Laboratory Investigation, 81(1), 59–64. https://doi.org/10.1080/00365513.2020.1852599.

Yüce, M., Ullah, N., and Budak1, H. 2015. Trends In Aptamer Selection Methods and Applications Meral. Analyst, 140(16).

Zhang, P., Zhang, Y., Xiong, X., Lu, Y., and Jia, N. 2020. A Sensitive Electrochemiluminescence Immunoassay for Glycosylated Hemoglobin Based on Ru(Bpy)32+ Encapsulated Mesoporous Polydopamine Nanoparticles. Sensors and Actuators, B: Chemical, 321, 128626. https://doi.org/10.1016/j.snb.2020.128626.

Refbacks

  • There are currently no refbacks.