Perbandingan Penggunaan Katalis Alam (Zeolit dan Bentonit) dalam Sintesis Biodiesel dari Minyak Goreng Komersil
Abstract
Biodiesel merupakan suatu senyawa metil ester berantai panjang yang mengandung asam lemak yang diperoleh melalui reaksi transesterifikasi. Bahan bakar alternatif ini dapat disintesis dari minyak goreng komersial dengan bantuan katalis. Katalis basa sering digunakan dalam reaksi transesterifikasi pada sintesis biodiesel. Penggunaan katalis akan meningkatkan persentase dari produk biodiesel yang dihasilkan. Katalis berfasa solid atau padat menjadi pilihan yang tepat untuk memudahkan proses pemisahan produk akhir reaksi dengan katalis. Katalis fasa padat yang dapat digunakan adalah zeolit dan bentonit alam. Penelitian ini bertujuan untuk menentukan pengaruh kinerja katalis zeolit dan bentonit yang telah diaktivasi terhadap produksi biodiesel dengan bahan dasar minyak goreng komersial serta menentukan rendemen hasil sintesis biodiesel melalui penggunaan katalis alam. Aktivasi dengan KOH dapat meningkatkan aktivitas katalisis dengan memperbesar luas permukaan dari katalis alam (bentonit dan zeolit). Analisis FTIR dan XRD terhadap katalis alam, pemurnian, aktivasi dan recycle menunjukkan adanya perubahan struktur kristalin dari katalis yang digunakan. Rendemen hasil sintesis biodiesel melalui penggunaan katalis bentonit dan zeolit berturut-turut adalah 91,75% dan 86,05%. Berdasarkan data persen rendemen hasil sintesis biodiesel, maka penggunaan katalis bentonit lebih baik di bandingkan dengan katalis zeolit. Analisis spektrum FTIR dari sintesis biodiesel yang berasal dari minyak jelantah menunjukkan hilangnya gugus OH yang memastikan bahwa reaksi transesterifikasi terjadi. Kualitas biodiesel yang dihasilkan memenuhi persyaratan Standar Nasional Indonesia (SNI) 04-7182-2006. Massa jenis biodiesel yang diproduksi menggunakan zeolit dan bentonit sebesar 868,54 kg/m3 dan 863,50 kg/m3. Sementara itu, viskositas biodiesel yang dihasilkan menggunakan zeolit dan bentonit berturut-turut sebesar 2,92 mm2/s dan 2,58 mm2/s.
Comparison of Using Natural Catalysts (Zeolite and Bentonite) in Biodiesel Synthesis from Commercial Cooking Oil. Biodiesel is a long-chain methyl ester compound that contains fatty acids obtained through a transesterification reaction. This alternative fuel can be synthesized from commercial cooking oil with the help of a catalyst. Base catalysts are often used in transesterification reactions in biodiesel synthesis. Using a catalyst will increase the percentage of the biodiesel product produced. Solid or solid-phase catalysts are the right choice to facilitate separating the final reaction product from a catalyst. Solid-phase catalysts that can be used are zeolite and natural bentonite. This study aims to determine the effect of activated zeolite and bentonite catalysts on biodiesel production using commercial cooking oil as a base material and determine biodiesel synthesis yield using natural catalysts. The catalyst activation with KOH can increase catalytic activity by increasing the surface area of natural catalysts. FTIR and XRD analysis of natural catalysts, purification, activation, and recycling showed a change in the crystalline structure of the catalyst used. The yield of biodiesel synthesis by using bentonite catalyst was 91.75%. Meanwhile, the use of zeolite catalysts produced 86.05% biodiesel. Based on the percent yield data from biodiesel synthesis, the use of bentonite catalyst is better than zeolite catalyst. FTIR spectrum analysis of biodiesel synthesis from used cooking oil showed the loss of the OH group, which confirmed that the transesterification reaction occurred. The quality of the biodiesel produced meets the requirements of the Indonesian National Standard (SNI) 04-7182-2006. The biodiesel densities produced using zeolite and bentonite are 868.54 kg/m3 and 863.50 kg/m3. Meanwhile, the biodiesel viscosities produced using zeolite and bentonite are 2.92 mm2/s and 2.58 mm2/s, respectively.
Keywords
Full Text:
PDFReferences
Akimkhan, A. M., 2012. Structural and Ion-Exchange Properties of Natural Zeolite. Ion Exchange Technologies, 10. doi: 10.5772/51682.
Bendahou, D., Bendahou, A., Grohens, Y., and Kaddami, H., 2015. New Nanocomposite Design from Zeolite and Poly (Lactic Acid). Industrial Crops and Products 72, 107‒118. doi: 10.1016/j.indcrop.2014.12.055.
Boz, N., Degirmenbasi, N., and Kalyon, D. M., 2013. Transesterification of Canola Oil to Biodiesel Using Calcium Bentonite Functionalized with K Compounds. Applied Catalysis B: Environmental 138, 236‒242. doi: 10.1016/j.apcatb.2013.02.043.
Drahansky, M., Paridah, M., Moradbak, A., Mohamed, A., Owolabi, F. A. T., Asniza, M., and Abdul, K. S. H., 2016. Montmorillonite: An Introduction to Properties and Utilization. Intech I (tourism), 13.
Fitriana, N., Husin, H., Yanti, D., Pontas, K., Alam, P. N., Ridlo, M., and Iskandar., 2018. Synthesis of K2O/Zeolite Catalysts by KOH Impregnation for Biodiesel Production from Waste Frying Oil. IOP Conference Series: Materials Science and Engineering 344. doi: 10.1088/1757-899X/334?1/012011.
Gili, M. B. Z., and Conato, M. T., 2018. Synthesis And Characterization of Mordenite-Type Zeolites with Varying Si/Al Ratio. Materials Research Express, 6. doi: 10.1088/2053-1591/aae8db.
Huggett, J. M., 2015. Clay Minerals. In Earth Systems and Environmental Sciences (Vol. 2).
Intarapong, P., Iangthanarat, S., Phanthong, P., Leungnaruemitchai. A., and Jai-In, S., 2013. Activity and Basic Properties of KOH/Mordenite for Transesterification of Palm Oil. Journal of Energy Chemistry 22, 690‒700. doi: 10.1016/S2095-4956(13)60092-3.
Islam, A., Taufiq-Yap, Y. H., Ravindra, P., Teo, S. H., Sivasangar, S., and Chan, E. S., 2015. Biodiesel Synthesis Over Millimetric Γ-Al2O3/KI Catalyst. Energy 89, 965‒973. doi: 10.1016/j.energy.2015.06.036.
Krupskaya, V. V., Zakusin, S. V., Tyupina, E. A., Dorzhieva, O. V., Zhukhlistov, A. P., Belousov, P. E., and Timofeeva, M. N., 2017. Experimental Study of Montmorillonite Structure and Transformation of Its Properties Under Treatment with Inorganic Acid Solutions. Minerals 7(4), 1–15. doi: 10.3390/min7040049.
Kusuma, R. I., Hadinoto, J. P., Ayucitra, A., Soetaredjo, F. E., and Ismadji, S., 2013. Natural Zeolite from Pacitan Indonesia, as Catalyst Support for Transesterification of Palm Oil. Applied Clay Science 74, 121‒126. doi: 10.1016/j.clay.2012.04.021.
Lin, C. C., Dambrowitz, K. A., and Kuznicki, S. M., 2012. Evolving Applications of Zeolite Molecular Sieves. The Canadian Journal of Chemical Engineering 90(2), 207‒216. doi: 10.1002/cjce.20667.
Marwaha, A., Dhir, A., Mahla, S. K., and Mohapatra, S. K., 2018. An Overview of Solid Base Heterogeneous Catalysts for Biodiesel Production. Catalysis Reviews 60(4), 594‒628. doi:10.1080/01614840.2018.1494782.
Murtiningrum, M., and Firdaus, A., 2016. Perkembangan Biodiesel Di Indonesia Tinjauan Atas Kondisi Saat Ini, Teknologi Produksi dan Analisis Prospektif. Penelitian dan Aplikasi Sistem dan Teknik Industri 9(1), 35‒45.
Narowska, B., Kułażyński, M., Łukaszewicz, M., and Burchacka, E., 2019. Use Of Activated Carbons as Catalyst Supports for Biodiesel Production. Renewable energy 135, 176‒185. doi: 10.1016/j.renene.2018.11.006.
Ngapa, Y. D., 2017. Kajian Pengaruh Asam-Basa pada Aktivasi Zeolit dan Karakterisasinya sebagai Adsorben Pewarna Biru Metilena. JKPK (Jurnal Kimia dan Pendidikan Kimia) 2(2), 90‒96. doi: 10.20961/jkpk.v2i2.11904.
Purwaningsih, E., Supartono, S. and Harjono, H., 2012. Reaksi Transesterifikasi Minyak Kelapa dengan Metanol Menggunakan Katalis Bentonit. Indonesian Journal of Chemical Science 1(2), 133‒139.
Soetaredjo, F. E., Ayucitra, A., Ismadji, S., and Maukar, A. L., 2011. KOH/Bentonite Catalysts for Transesterification of Palm Oil to Biodiesel. Applied Clay Science 53(2), 341‒346. doi: 10.1016/j.clay.2010.12.018.
Refbacks
- There are currently no refbacks.