Sintesis Kitosan dari Kulit Udang sebagai Bahan Membran Elektrode Au/Kitosan/GTA/AChE untuk Deteksi Pestisida

Mashuni Mashuni, Halimahtussaddiyah Ritonga, Muhammad Jahiding, Fitri Handayani Hamid

Abstract

Sintesis kitosan telah dikembangkan dengan metode pemanasan microwave (MW) menggunakan pelarut alkali untuk kebutuhan berbagai aplikasi yang salah satunya sebagai membran immobilisasi enzim. Penelitian membran kitosan dengan immobilisasi enzim asetilkolinesterase (AChE) sebagai elektrode biosensor terus berkembang untuk menghasilkan perangkat mutakhir yang dapat mendeteksi pestisida. Penelitian ini bertujuan untuk menghasilkan biosensor berbasis elektrode membran Au/Kitosan/GTA/AChE untuk deteksi pestisida karbaril yang memiliki batas deteksi yang rendah, sensitivitas yang tinggi, waktu respon cepat dan presisi yang baik. Kitosan dihasilkan dari isolasi kitin dari kulit udang menggunakan alat MW dan pelarut NaOH dengan daya 450 Watt selama 15 menit menghasilkan rendemen sebesar 31,50%. Karakterisasi FTIR kitosan diidentifikasi adanya gugus O–H, C–N, N–H amina, dan C=O dengan intensitas yang rendah serta derajat deasetilasi rata-rata 95,6 ± 0,1%. Komposisi elektrode membran Au/Kitosan/GTA/AChE menggunakan kitosan dengan variasi konsentrasi 2, 5, dan 8% (b/v) dan glutaraldehid (GTA) 25%, kawat Au dan diimobilisasikan enzim asetilkolinesterase (AChE). Elektrode membran Au/Kitosan 2%/GTA/AChE memiliki karakteristik yang baik dimana nilai sensitivitas sebesar 23,318 mV.dekade-1 pada rentang konsentrasi pestisida 10-7 – 10-1 µg mL-1 dengan batas deteksi (LoD) 1 × 10-7 µg mL-1. Waktu respon yang diperoleh yaitu pada rentang waktu 5– 7 menit dengan relative standard deviation (RSD) sebesar 0,588%. Biosensor yang dikembangkan menunjukkan sensitivitas, stabilitas dan reproduktifitas yang baik, sehingga elektrode membran Au/Kitosan/GTA/AChE menjanjikan untuk alat deteksi pestisida. 

Synthesis of Chitosan from Shrimp Shell as Electrode Membrane Material Au/Chitosan/GTA/AChE for Pesticide Detection. Chitosan synthesis has been developed using the heating by microwave (MW) method using alkaline solvents for various applications, one of which is an enzyme immobilization membrane. Chitosan membrane research with immobilization of the enzyme Acetylcholinesterase (AChE) as a biosensor electrode developed to produce advanced devices that can detect pesticides. This study aims to produce a biosensor based on Au/Chitosan/GTA/AChE membrane electrodes to detect carbaryl pesticides with a low detection limit, high sensitivity, fast response time, and good precision. Chitosan was produced from the isolation of chitin from shrimp shells using an MW device and NaOH solvent with a power of 450 Watts for 15 minutes to produce a yield of 31.50%. The FTIR characterization of chitosan identified the presence of O–H, C–H, C–N, N–H amine groups and C=O with low intensity and the average degree of deacetylation of 95.6 ± 0.1%. The composition of Au/Chitosan/GTA/AChE membrane electrodes used chitosan with various concentrations of 2, 5, and 8% (w/v) and glutaraldehyde (GTA) 25% on Au wire and immobilized with AChE enzyme. The Au/Chitosan 2%/GTA/AChE membrane electrode has good characteristics where the sensitivity value is 23.318 mV.decade-1 in the pesticide concentration range of  10-7 – 10-1 µg mL-1 with a detection limit (LoD) of 1 × 10-7 µg mL-1. The response time obtained is in the range of 5 ‒ 7 minutes with a relative standard deviation (RSD) of 0.588%. The developed biosensor shows good sensitivity, stability, and reproducibility, thus Au/Chitosan/GTA/AChE membrane electrodes are promising for pesticide detection.

Keywords

acetylcholinesterase; electrode; chitosan; membrane; pesticide.

Full Text:

PDF

References

Arulmoorthy, M.P., Anbarasi, G., Srinivasan, M., and Vishnupriya, B., 2020. Biosynthesis and Characterization of Chitosan Based Hydrogel: A Potential in Vitro Wound Healing Agent, in: Materials Today: Proceedings. Elsevier Ltd, p. xxx. doi: 10.1016/j.matpr.2020.07.186.

Aslam, S., Asgher, M., Khan, N.A., and Bilal, M., 2021. Immobilization of Pleurotus nebrodensis WC 850 Laccase on Glutaraldehyde Cross-Linked Chitosan Beads for Enhanced Biocatalytic Degradation of Textile Dyes. Journal of Water Process Engineering 40, 101971. doi: 10.1016/j.jwpe.2021.101971.

Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Jahurul, M.H.A., Ghafoor, K., Norulaini, N.A.N., and Omar, A.K.M., 2013. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. Journal of Food Engineering 117, 426–436. doi: 10.1016/j.jfoodeng.2013.01.014.

Baharuddin, S., and Isnaeni, D., 2020. Isolasi dan Uji Aktivitas Kitosan Cangkang Kerang Bulu (Anadara inflata) sebagai Antibakteri terhadap Staphylococcus epidermidis dan Escherichia coli. MPI (Media Pharmacy Indonesia 3, 60–69. doi: 10.24123/mpi.v3i2.3181.

Bigman, J.L., and Reinhardt, K.A., 2018. Monitoring of Chemicals and Water, Handbook of Silicon Wafer Cleaning Technology. Elsevier Inc. doi: 10.1016/B978-0-323-51084-4.00011-3.

Buiculescu, R., and Chaniotakis, N.A., 2012. The Stabilization of Au NP-AChE Nanocomposites by Biosilica Encapsulation for the Development of a Thiocholine Biosensor. Bioelectrochemistry 86, 72–77. doi: 10.1016/j.bioelechem.2012.02.005.

Cao, J., Wang, M., Yu, H., She, Y., Cao, Z., Ye, J., Abd El-Aty, A.M., Haclmüftüoǧlu, A., Wang, J., and Lao, S., 2020. An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides. Journal of Agricultural and Food Chemistry 68, 7298–7315. doi: 10.1021/acs.jafc.0c01962.

Chauhan, N., and Pundir, C.S., 2012. An amperometric Acetylcholinesterase Sensor Based on Fe3O4 Nanoparticle/Multi-Walled Carbon Nanotube-Modified ITO-Coated Glass Plate for the Detection of Pesticides. Electrochimica Acta 67, 79–86. doi: 10.1016/j.electacta.2012.02.012.

Christian, G.D., Dasgupta, P.K., and Kevin A. S., 2014. Analytical Chemistry, 7th ed. Wiley, Haboken, NJ. doi: 10.1021/ed063pa277.3.

Cui, H.F., Wu, W.W., Li, M.M., Song, X., Lv, Y., and Zhang, T.T., 2018. A Highly Stable Acetylcholinesterase Biosensor Based on Chitosan-TiO2-Graphene Nanocomposites for Detection of Organophosphate Pesticides. Biosensors and Bioelectronics 99, 223–229. doi: 10.1016/j.bios.2017.07.068.

Fakhrullah, F., Sugita, P., Khotib, M., Akiyoshi, T., and Takahashi, S., 2019. Komposit Polianilina/Kitosan/Perak Nanowires Sebagai Elektrokatalis Reaksi Evolusi Hidrogen dalam Medium Netral. ALCHEMY Jurnal Penelitian Kimia 15, 190. doi: 10.20961/alchemy.15.2.30460.190-202.

Hu, T.G., Cheng, J.H., Zhang, B.B., Lou, W.Y., and Zong, M.H., 2015. Immobilization of Alkaline Protease on Amino-Functionalized Magnetic Nanoparticles and its Efficient Use for Preparation of Oat Polypeptides. Industrial & Engineering Chemistry Research 54, 4689–4698. doi: 10.1021/ie504691j.

Işık, M., 2020. High Stability of Immobilized Acetylcholinesterase on Chitosan Beads. ChemistrySelect 5, 4623–4627. doi: 10.1002/slct.202000559.

Kamal, N., 2010. Pengaruh Bahan Aditif CMC (Carboxymethyl Cellulose) terhadap Beberapa Parameter pada Larutan Sukrosa. Jurnal Teknologi 1, 78–85.

Lim, S.H., and Hudson, S.M., 2004. Synthesis and Antimicrobial Activity of a Water-Soluble Chitosan Derivative with a Fiber-Reactive Group. Carbohydrate Research 339, 313–319. doi: 10.1016/j.carres.2003.10.024.

Lucas, A.J. da S., Oreste, E.Q., Costa, H.L.G., López, H.M., Saad, C.D.M., and Prentice, C., 2021. Extraction, Physicochemical Characterization, and Morphological Properties of Chitin and Chitosan from Cuticles of Edible Insects. Food Chemistry 343, 128550. doi: 10.1016/j.foodchem.2020.128550.

Mark, H., and Workman, J., 2018. Limitations in Analytical Accuracy: Part 1—Horwitz’s Trumpet, 2rd ed, Chemometrics in Spectroscopy. Elsevier Inc. doi: 10.1016/b978-0-12-805309-6.00072-6.

Mashuni, M., Natsir, M., Lestari, W.M., Hamid, F.H., and Jahiding, M., 2021. Pemanfaatan Kitosan dari Cangkang Kepiting Bakau (Scylla serrata) dengan Metode Microwave sebagai Bahan Dasar Kapsul Obat. ALCHEMY Jurnal Penelitian Kimia 17, 74. doi: 10.20961/alchemy.17.1.42038.74-82.

Mashuni, Ramadhan, L.O.A.N., Jahiding, M., and Herniati, 2016. Analysis of Diazinon Pesticide using Potentiometric Biosensor Based on Enzyme Immobilized Cellulose Acetate Membrane in Gold Electrode, in: IOP Conference Series: Materials Science and Engineering 10th Joint Conference on Chemistry, pp. 1–7. doi: 10.1088/1757-899X/107/1/012013.

Mohan, K., Ganesan, A.R., Muralisankar, T., Jayakumar, R., Sathishkumar, P., Uthayakumar, V., Chandirasekar, R., and Revathi, N., 2020. Recent Insights into the Extraction, Characterization, and Bioactivities of Chitin and Chitosan from Insects. Trends in Food Science and Technology 105, 17–42. doi: 10.1016/j.tifs.2020.08.016.

Negm, N.A., Abubshait, H.A., Abubshait, S.A., Abou Kana, M.T.H., Mohamed, E.A., and Betiha, M.M., 2020. Performance of Chitosan Polymer as Platform during Sensors Fabrication and Sensing Applications. International Journal of Biological Macromolecules 165, 402–435. doi: 10.1016/j.ijbiomac.2020.09.130.

Pavoni, J.M.F., dos Santos, N.Z., May, I.C., Pollo, L.D., and Tessaro, I.C., 2021. Impact of Acid Type and Glutaraldehyde Crosslinking in the Physicochemical and Mechanical Properties and Biodegradability of Chitosan Films. Polymer Bulletin 78, 981–1000. doi: 10.1007/s00289-020-03140-4.

Pohanka, M., Musilek, K., and Kuca, K., 2009. Progress of Biosensors Based on Cholinesterase Inhibition. Current Medicinal Chemistry 16, 1790–1798. doi: 10.2174/092986709788186129.

Pundir, C.S., and Chauhan, N., 2012. Acetylcholinesterase Inhibition-Based Biosensors for Pesticide Determination: A Review. Analytical Biochemistry 429, 19–31. doi: 10.1016/j.ab.2012.06.025.

Pundir, C.S., Malik, A., and Preety, 2019. Bio-sensing of Organophosphorus Pesticides: A Review. Biosensors and Bioelectronics 140. doi: 10.1016/j.bios.2019.111348.

Qian, S., and Lin, H., 2015. Colorimetric Sensor Array for Detection and Identification of Organophosphorus and Carbamate Pesticides. Analytical Chemistry 87, 5395–5400. doi: 10.1021/acs.analchem.5b00738.

Queiroz, M.F., Melo, K.R.T., Sabry, D.A., Sassaki, G.L., and Rocha, H.A.O., 2015. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Marine Drugs 13, 141–158. doi: 10.3390/md13010141.

Sahu, A., Goswami, P., and Bora, U., 2009. Microwave Mediated Rapid Synthesis of Chitosan. Journal of Materials Science: Materials in Medicine 20, 171–175. doi: 10.1007/s10856-008-3549-4.

Setyawati, A., Pranowo, D., and Kartini, I., 2016. Effect of Microwave Irradiationon Synthesis of Chitosan for Biomedical Grade Applications of Biodegradable Materials. Jurnal Eksakta 16, 137–148. doi: 10.20885/eksakta.vol16.iss2.art8.

Song, C., Yu, H., Zhang, M., Yang, Y., and Zhang, G., 2013. Physicochemical Properties and Antioxidant Activity of Chitosan from the Blowfly Chrysomya megacephala Larvae. International Journal of Biological Macromolecules 60, 347–354. doi: 10.1016/j.ijbiomac.2013.05.039.

Vashist, S.K., and Luong, J.H.T., 2018. Bioanalytical Requirements and Regulatory Guidelines for Immunoassays, Handbook of Immunoassay Technologies: Approaches, Performances, and Applications. Elsevier Inc. doi: 10.1016/B978-0-12-811762-0.00004-9.

Vino, A.B., Ramasamy, P., Shanmugam, V., and Shanmugam, A., 2012. Extraction, Characterization and In Vitro Antioxidative Potential of Chitosan and Sulfated Chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian Pacific Journal of Tropical Biomedicine 2, 334–341. doi: 10.1016/S2221-1691(12)60184-1.

Wahba, M.I., 2017. Chitosan-glutaraldehyde Activated Calcium Pectinate Beads as a Covalent Immobilization Support. Biocatalysis and Agricultural Biotechnology 12, 266–274. doi: 10.1016/j.bcab.2017.10.016.

Wang, S. nan, Zhang, C. ran, Qi, B. kun, Sui, X. nan, Jiang, L. zhou, Li, Y., Wang, Z. jiang, Feng, H. xia, Wang, R., and Zhang, Q. zhi, 2014. Immobilized Alcalase Alkaline Protease on the Magnetic Chitosan Nanoparticles Used for Soy Protein Isolate Hydrolysis. European Food Research and Technology 239, 1051–1059. doi: 10.1007/s00217-014-2301-1.

Wang, X., Gu, H., Yin, F., and Tu, Y., 2009. A Glucose Biosensor Based on Prussian Blue/Chitosan Hybrid Film. Biosensors and Bioelectronics 24, 1527–1530. doi: 10.1016/j.bios.2008.09.025.

Wei, M., and Wang, J., 2015. A Novel Acetylcholinesterase Biosensor Based on Ionic Liquids-AuNPs-Porous Carbon Composite Matrix for Detection of Organophosphate Pesticides. Sensors Actuators, B Chem. 211, 290–296. doi: 10.1016/j.snb.2015.01.112.

Yeng, C.M., Husseinsyah, S., and Ting, S.S., 2013. Chitosan/corn Cob Biocomposite Films by Cross-Linking with Glutaraldehyde. BioResources 8, 2910–2923. doi: 10.15376/biores.8.2.2910-2923.

Yu, G., Wu, W., Zhao, Q., Wei, X., and Lu, Q., 2015. Efficient Immobilization of Acetylcholinesterase onto Amino Functionalized Carbon Nanotubes for the Fabrication of High Sensitive Organophosphorus Pesticides Biosensors. Biosensors and Bioelectronics 68, 288–294. doi: 10.1016/j.bios.2015.01.005.

Zaeni, A., Fuadah, B., and Sudiana, I.N., 2017. Efek Microwave pada Proses Deasetilasi Kitin dari Limbah Cangkang Udang. Journal of Applied Physics 13, 48–53.

Zhai, C., Sun, X., Zhao, W., Gong, Z., and Wang, X., 2013. Acetylcholinesterase Biosensor Based on Chitosan/Prussian Blue/Multiwall Carbon Nanotubes/Hollow Gold Nanospheres Nanocomposite Film by One-Step Electrodeposition. Biosensors and Bioelectronics 42, 124–130. doi: 10.1016/j.bios.2012.10.058.

Zhang, X., Teng, Z., and Huang, R., 2020. Biodegradable Starch/Chitosan Foam via Microwave Assisted Preparation: Morphology and Performance Properties. Polymers (Basel). 12, 1–17. doi: 10.3390/polym12112612.

Refbacks

  • There are currently no refbacks.