Pemanfaatan Ekstrak Antosianin dari Limbah Kulit Bawang Merah (Allium cepa) sebagai Zat Pemeka (Sensitizer) pada Dye Sensitized Solar Cell (DSSC)

Risna Erni Yati Adu, Gebhardus Gelyaman, Marlince Kabosu


Fabrikasi DSSC dengan menggunakan sensitizer zat warna sintetik yang mahal dan susah diperoleh dapat diatasi dengan memanfaatkan zat warna alami dari limbah biomassa kulit bawang merah. Penelitian tentang ekstraksi antosianin dari limbah kulit bawang merah (Allium cepa) dan pemanfaatannya sebagai zat pemeka (sensitizer) pada Dye Sensitized Solar Cell (DSSC) telah dilakukan dengan tujuan untuk mengetahui karakteristik warna ekstrak antosianin dalam limbah kulit bawang merah dan potensinya sebagai zat pemeka dalam DSSC. Antosianin dalam limbah kulit bawang merah diekstraksi dengan menggunakan pelarut etanol 95% dengan penambahan asam (ET) dan etanol tanpa penambahan asam (ETT). Ekstrak kulit bawang merah dikarakterisasi serapan warna dan gugus fungsinya dengan Spektrofotometer UV-Vis pada panjang gelombang 200 nm – 800 nm dan Fourier Transform Infrared (FTIR) pada bilangan gelombang 4000 cm-1 – 500 cm-1. Selanjutnya DSSC difabrikasi dan efisiensi DSSC ditentukan melalui perhitungan tegangan dan kuat arus yang terukur oleh multimeter. Hasil karakterisasi warna menunjukkan bahwa ekstrak kulit bawang merah baik dengan pelarut etanol terasamkan dan tidak terasamkan memiliki serapan maksimum pada panjang gelombang UV dengan serapan utama pada panjang gelombang 221, 251, 291 dan 366 nm. Spektrum FTIR ekstrak kulit bawang menunjukkan serapan khas gugus fungsi pada molekul antosianin pada rentang bilangan gelombang 3418 cm-1– 3375 cm-1 untuk gugus –OH, 2842 cm-1 – 2959 cm-1 untuk C–H alifatik, 1635 cm-1 – 1668 dan 714 cm-1 masing-masing untuk C=C dan C–H aromatic, 1040 cm-1– 1091 cm-1 untuk C–O–C dan 1198 cm-1– 1122 cm-1 untuk C–O alkohol. Hasil pengujian efisiensi sel menunjukkan bahwa sel DSSC yang difabrikasi menggunakan ekstrak etanol TT memiliki nilai efisiensi yang lebih tinggi yaitu sebesar 0,0491%.

The Application of Anthocyanins Extracts from Red Onion Peel  Waste (Allium cepa) as a Sensitizer in Dye-Sensitized Solar Cell (DSSC). DSSC fabrication using synthetic dye sensitizers which are expensive and difficult to obtain can be overcome by utilizing natural dyes from onion peel. Anthocyanin extraction from red onion peel (Allium cepa) and its use as a sensitizer in dye-sensitized solar cells (DSSC) has been investigated. The purpose of this study was to determine the color characteristics of anthocyanin extract in onion peel waste and its potential as a sensitizer. Anthocyanin in onion peel waste was extracted using 95% ethanol as a solvent with acid (ET) and ethanol without acid (ETT). The color absorption and functional groups of onion peel extract were characterized using UV-Vis spectrophotometer at 200 nm – 800 nm wavelength and Fourier Transform Infrared (FTIR) at wavenumber of 4000 cm-1 – 500 cm-1. Furthermore, DSSC was fabricated, and an efficiency value was achieved by calculating the voltage and current measured by the multimeter. Onion peel extract has maximum absorption in acidified and unacidified ethanol at UV wavelengths, with the main absorption at 221, 251, 291, and 366 nm. The FTIR spectrum of onion peel extract shows typical absorption of functional groups in anthocyanin at wavenumbers of 3418 cm-1 – 3375 cm-1 for the –OH group, 2842 cm-1– 2959 cm-1 for aliphatic CH, 1635 cm-1–1668 cm-1, and 714 cm-1 for C=C and C–H aromatics, respectively. The absorption band at 1040 cm-1– 1091 cm-1 and 1198 cm-1 – 1122 cm-1 correspond to C–O–C and C–O alcohol. DSSC cells fabricated using unacidified ethanol extract have the highest efficiency of 0.0491%.


anthocyanin; extraction; red onion peel; solar cell; sensitizer.

Full Text:



Adedokun, O., Titilope, K., and Awodugba, A.O., 2016. Review on Natural Dye-Sensitized Solar Cells (DSSCs). International Journal of Engineering Technologies, IJET 2, 34. doi: 10.19072/ijet.96456.

Ahliha, A.H., Nurosyid, F., Supriyanto, A., and Kusumaningsih, T., 2018. Optical Properties of Anthocyanin Dyes on TiO2 as Photosensitizers for Application of Dye-Sensitized Solar Cell (DSSC). IOP Conference Series: Materials Science and Engineering 333, 012018. doi: 10.1088/1757-899X/333/1/012018.

Amelia, F., Afnani, G.N., Musfiroh, A., Fikriyani, A.N., and Ucche, S., 2013. Extraction and Stability Test of Anthocyanin From Buni Fruits (Antidesma Bunius L) As an Alternative Natural and Safe Food Colorants. Journal of Food and Pharmaceutical Sciences 1, 49–53. doi: 10.14499/jfps.

Ammar, A.M., Mohamed, H.S.H., Yousef, M.M.K., Abdel-Hafez, G.M., Hassanien, A.S., and Khalil, A.S.G., 2019. Dye-Sensitized Solar Cells (DSSCs) Based on Extracted Natural Dyes. Journal of Nanomaterials 2019, 1–10. doi: 10.1155/2019/1867271.

Cari, C., Khairuddin, Septiawan, T.Y., Suciatmoko, P.M., Kurniawan, D., and Supriyanto, A., 2018. The Preparation of Natural Dye for Dye-Sensitized Solar Cell (DSSC). p. 020106. doi: 10.1063/1.5054510.

Chang, H., Kao, M.-J., Chen, T.-L., Chen, C.-H., Cho, K.-C., and Lai, X.-R., 2013. Characterization of Natural Dye Extracted from Wormwood and Purple Cabbage for Dye-Sensitized Solar Cells. International Journal of Photoenergy 2013, 1–8. doi: 10.1155/2013/159502.

Collings, D.A., 2019. Anthocyanin in the Vacuole of Red Onion Epidermal Cells Quenches Other Fluorescent Molecules. Plants 8, 596. doi: 10.3390/plants8120596

Das, S.K., Ganguli, S., Kabir, H., Khandaker, J.I., Ahmed, F., 2020. Performance of Natural Dyes in Dye-Sensitized Solar Cell as Photosensitizer. Transactions on Electrical and Electronic Materials 21, 105–116. doi: 10.1007/s42341-019-00158-y.

Enaru, B., Drețcanu, G., Pop, T.D., Stǎnilǎ, A., and Diaconeasa, Z., 2021. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 10, 1967. doi: 10.3390/antiox10121967.

Favaro, L., Balcão, V., Rocha, L., Silva, E., Oliveira Jr., J., Vila, M., and Tubino, M., 2018. Physicochemical Characterization of a Crude Anthocyanin Extract from the Fruits of Jussara (Euterpe edulis Martius): Potential for Food and Pharmaceutical Applications. Journal of the Brazilian Chemical Society. doi: 10.21577/0103-5053.20180082.

Ghann, W., Kang, H., Sheikh, T., Yadav, S., Chavez-Gil, T., Nesbitt, F., Uddin, J., 2017. Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell. Scientific Reports 7, 41470. doi: 10.1038/srep41470.

Hardeli, Zainul, R., and Isara, L.P., 2019. Preparation of Dye Sensitized Solar Cell (DSSC) using Anthocyanin Color Dyes from Jengkol Shell (Pithecellobium lobatum Benth.) by the Gallate Acid Copigmentation. Journal of Physics: Conference Series 1185, 012021. doi: 10.1088/1742-6596/1185/1/012021.

Heeger, A.J., 2001. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials. The Journal of Physical Chemistry B 105, 8475–8491. doi: 10.1021/jp011611w.

Hemmatzadeh, R., and Jamali, A., 2015. Enhancing the Optical Absorption of Anthocyanins for Dye-Sensitized Solar Cells. Journal of Renewable and Sustainable Energy 7, 013120. doi: 10.1063/1.4907599.

Hosseinnezhad, M., Gharanjig, K., Moradian, S., and Saeb, M.R., 2017. In Quest of Power Conversion Efficiency in Nature-Inspired Dye-Sensitized Solar Cells: Individual, Co-Sensitized or Tandem Configuration? Energy 134, 864–870. doi: 10.1016/

Magsi, K., Lee, P., Kang, Y., Bhattacharya, S., and Fortmann, C.M., 2012. Enhanced Chlorophyll A Purification and Dye Sensitized Solar Cell Performance. Mrs Proceedings 1390, mrsf11-1390-h13-36. doi: 10.1557/opl.2012.797.

Maylinda, E.V., Rinadi, A., Putri, E.A., Fadillah, G., and Wayuningsih, S., 2019. Color Stability of Anthocyanins Copigmentation from Red Rice (Oryza sativa L.) Bran by Spectrophotometry UV-Vis. IOP Conference Series: Materials Science and Engineering 578, 012001. doi: 10.1088/1757-899X/578/1/012001.

Oancea, S., and Drághici, O., 2013. pH and Thermal Stability of Anthocyanin-Based Optimised Extracts of Romanian Red Onion Cultivars. Czech Journal of Food Sciences 31, 283–291. doi: 10.17221/302/2012-CJFS.

Pathak, C., Surana, K., Kumar Shukla, V., and Singh, P.K., 2019. Fabrication and characterization of dye sensitized solar cell using natural dyes. Materials Today: Proceedings 12, 665–670. doi: 10.1016/j.matpr.2019.03.111.

Rodrigues, A.S., Almeida, D.P.F., Simal-Gándara, J., and Pérez-Gregorio, M.R., 2017. Onions: A Source of Flavonoids, in: Flavonoids - From Biosynthesis to Human Health. InTech. doi: 10.5772/intechopen.69896.

Saha, S., Singh, J., Paul, A., Sarkar, R., Khan, Z., and Banerjee, K., 2020. Anthocyanin Profiling Using UV-Vis Spectroscopy and Liquid Chromatography Mass Spectrometry. Journal of AOAC INTERNATIONAL 103, 23–39. doi: 10.5740/jaoacint.19-0201.

Sani, A., Ahmad, A., and Zenta, F., 2019. Effect Of Metal Ion Cu (Ii) And Mg (Ii) On The Activities Antioxidant Anthocyanin Of Extract Ethanol Skin Dragon Fruit Red(Hylocereuspolyrhizus). Jurnal Akta Kimia Indonesia (Indonesia Chimica Acta) 11, 11. doi: 10.20956/ica.v11i1.6400.

Swer, T.L., Mukhim, C., Bashir, K., and Chauhan, K., 2018. Optimization of Enzyme Aided Extraction of Anthocyanins from Prunus nepalensis L. LWT 91, 382–390. doi: 10.1016/j.lwt.2018.01.043.

Syafinar, R., Gomesh, N., Irwanto, M., Fareq, M., and Irwan, Y.M., 2015. Cocktail Dyes from Blueberry and Dragon Fruit in the Application for DSSC. ARPN Journal of Engineering and Applied Sciences 10, 6348–6353.

Wahyuningsih, S., Wulandari, L., Wartono, M.W., Munawaroh, H., and Ramelan, A.H., 2017. The Effect of pH and Color Stability of Anthocyanin on Food Colorant. IOP Conference Series: Materials Science and Engineering 193, 012047. doi: 10.1088/1757-899X/193/1/012047.

Ye, M., Wen, X., Wang, M., Iocozzia, J., Zhang, N., Lin, C., and Lin, Z., 2015. Recent Advances in Dye-Sensitized Solar Cells: from Photoanodes, Sensitizers and Electrolytes to Counter Electrodes. Materials Today 18, 155–162. doi: 10.1016/j.mattod.2014.09.001.


  • There are currently no refbacks.