Kinetika Esterifikasi Asam Lemak Bebas dari Sludge Industri Crude Palm Oil (CPO) Menggunakan Katalis Komposit Montmorillonite/Karbon Tersulfonasi dari Tetes Tebu

Qodria Utami Putri, Diah Augustin, Hasanudin Hasanudin

Abstract

Kinetika esterifikasi asam lemak bebas dari sludge CPO telah dilakukan dengan pereaksi etanol dan menggunakan katalis komposit montmorillonite/karbon tersulfonasi dari tetes tebu. Esterifikasi dilakukan dengan memvariasikan temperatur (60, 70, dan 80 oC) dan rasio mol antara etanol dan asam lemak bebas (10, 13, 16, 19, dan 22). Hasil penelitian menunjukan bahwa semakin tinggi temperatur, akan meningkatkan laju reaksi esterifikasi, konstanta laju reaksi dan konstanta kesetimbangan reaksi esterifikasi asam lemak bebas. Hal ini menunjukan bahwa reaksi esterifikasi merupakan reaksi endoterm. Sementara itu, semakin besar rasio mol antara etanol dan asam lemak bebas, akan menurunkan laju reaksi. Konstanta Arrhenius dari reaksi esterifikasi tersebut adalah sebesar 2,7183 dan energi aktivasi sebesar 17,9366 kJ/mol. Hasil uji validasi persamaan model kinetika menggunakan nilai R2 dan slope dari grafik perbandingan antara nilai x hasil eksperimen dan x hitung model kinetika. Nilai R2 dan slope dari grafik mendekati angka 1 yang menunjukkan bahwa model persamaan yang digunakan dapat diterima dan layak untuk menghitung kinetika esterifikasi asam lemak bebas.

Kinetics of Esterification of Free Fatty Acids from Crude Palm Oil (CPO) Industrial Sludge Using a Montmorillonite/Sulfonated Carbon Composite Catalyst from Molasses. Kinetics of esterification of free fatty acids from crude palm oil sludge esterification has been carried out with reagent ethanol and using the composite catalyst of montmorillonite/ sulfonated carbon from molasses. Esterification was done by varying the temperature (60, 70, and 80 °C) and the mole ratio between ethanol and free fatty acids (10, 13, 16, 19, and 22). The results showed that the higher temperature would increase the rate of esterification reaction, the reaction rate constants, and the equilibrium constants esterification of free fatty acids. These findings show that the esterification reaction is an endothermic reaction. Meanwhile, the larger mole ratio between ethanol and free fatty acids would decrease the reaction rate. Arrhenius’s constant value of the esterification reaction is 2.7183 and the activation energy is 17.9366 kJ/mol. The results of the validation test of the kinetic model equation using the value of R2 and the slope of the comparison graph between the x value of the experimental results and the calculated x of the kinetic model. The value of R2 and the slope of the graph is close to 1 which indicates that the equation model used is acceptable and feasible to calculate the kinetics of free fatty acid esterification.

 

Keywords

carbon sulphonate; catalyst; kinetic; montmorillonite; CPO sludge.

Full Text:

PDF

References

Abdullah, S. H. Y. S., Hanapi, N. H. M., Azid, A., Umar, R., Juahir, H., Khatoon, H., and Endut, A., 2017. A Review of Biomass-Derived Heterogeneous Catalyst for a Sustainable Biodiesel Production. Renewable and Sustainable Energy Reviews, 70, 1040–51. doi: 10.1016/j.rser.2016.12.008.

Bastos, R. R. C., da Luz Corrêa, A. P., da Luz, P. T. S., da Rocha Filho, G. N., Zamian, J. R., and da Conceição, L. R. V., 2020. Optimization of Biodiesel Production using Sulfonated Carbon-Based Catalyst from an Amazon Agro-Industrial Waste. Energy Conversion and Management, 205, 112457. doi: 10.1016/j.enconman.2019.112457.

Du, Y., Shao, L., and Qi, C., 2021. Sulfonated and Cross-Linked Polystyrene Ultrafine Fibers for the Esterification of Palmitic Acid for Biodiesel Production. Journal of Applied Polymer Science, 138(14), 1–9. doi: 10.1002/app.50169.

Farag, H., El-Maghraby, A., and Taha, N., 2013. Kinetic Study of Used Vegetable Oil for Esterification and Transesterification Process of Biodiesel Production. International Journal of Chemistry and Biochemical Sciences, 3, 1–8.

Flores, K. P., Omega, J. L. O., Cabatingan, L. K., Go, A. W., Agapay, R. C., and Ju, Y. H., 2019. Simultaneously Carbonized and Sulfonated Sugarcane Bagasse as Solid Acid Catalyst for the Esterification of Oleic Acid with Methanol. Renewable energy, 130, 510–523. doi: 10.1016/j.renene.2018.06.093.

Fonseca, J. M., Spessato, L., Cazetta, A. L., Bedin, K. C., Melo, S. A. R., Souza, F. L., and Almeida, V. C., 2020. Optimization of Sulfonation Process for the Development of Carbon-Based Catalyst from Crambe Meal via Response Surface Methodology. Energy Conversion and Management, 217(112975), 1–11. doi: 10.1016/j.enconman.2020.112975.

Haryanto, A., Gita, A. C., Saputra, T. W., and Telaumbanua, M., 2020. First Order Kinetics of Biodiesel Synthesis Using Used Frying Oil through Transesterification Reaction. Aceh International Journal of Science and Technology, 9(1), 1–11. doi: 10.13170/aijst.9.1.13297.

Hasanudin, H., Putri, Q. U., Agustina, T. E., and Hadiah, F., 2022. Esterification of Free Fatty Acid in Palm Oil Mill Effluent using Sulfated Carbon-Zeolite Composite Catalyst. Pertanika Journal of Science & Technology, 30(1). doi: 10.47836/pjst.30.1.21.

Harun, F. W., Almadani, E. A., and Radzi, S. M., 2016. Metal Cation Exchanged Montmorillonite K10 (MMT K10): Surface Properties and Catalytic Activity. Journal of Scientific Research and Development, 3(3), 90–96.

Howard, J., Rackemann, D. W., Bartley, J. P., Samori, C., and Doherty, W. O., 2018. Conversion of Sugar Cane Molasses to 5-hydroxymethylfurfural using Molasses and Bagasse-Derived Catalysts. ACS Sustainable Chemistry & Engineering, 6(4), 4531–4538. doi: 10.1021/acssuschemeng.7b02746.

Liu, T., Li, Z., Li, W., Shi, C., and Wang, Y., 2013. Preparation and Characterization of Biomass Carbon-based Solid Acid Catalyst for the Esterification of Oleic Acid with Methanol. Bioresource Technology, 133, 618–621. doi: 10.1016/j.biortech.2013.01.163.

Muanruksa, P. and Pakawadee, K., 2020. Combination of Fatty Acids Extraction and Enzymatic Esterification for Biodiesel Production Using Sludge Palm Oil as a Low-Cost Substrate. Renewable Energy, 146, 901‒906. doi : 10.1016/j.renene.2019.07.027.

Nakajima, K. and Hara, M., 2012. Amorphous Carbon with SO3H Groups as a Solid Brønsted Acid Catalyst. ACS Catalysis, 2(7), 1296‒1304. doi: 10.1021/cs300103k.

Rani, K. N. P., Neeharika, T. S. V. R., Vardhan, G. H., Kumar, T. P., and Devi, B. L. A. P., 2020. The Kinetics of the Esterification of Free Fatty Acids in Jatropha Oil Using Glycerol Based Solid Acid Catalyst. European Journal of Sustainable Development Research, 4(2), 1–11. doi: 10.29333/ejosdr/7594

Shu, Q., Nawaz, Z., Gao, J., Liao, Y., Zhang, Q., Wang, D., and Wang, J., 2011. Synthesis of Biodiesel from a Model Waste Oil Feedstock Using a Carbon Based Solid Acid Catalyst: Reaction and Separation. Bioresource Technology, 101(14), 5374–5384. doi: 10.1016/j.biortech.2010.02.050.

Setiowati, R., Nurhayati, and Linggawati, A., 2014. Produksi Biodisel dari Minyak Goreng Bekas Menggunakan Katalis CaO Cangkang Kerang Darah Kalsinasi 900 °C, Jom Fmipa, 1(2), 383‒388.

Yusmartato and Parinduri, L., 2018. Perbaikan Alat Pengutip Minyak dalam Sludge dan Condensat. Buletin Utama Teknik, 13(3), 206–10.

Yustira, Y., Usman, T., and Wahyuni, N., 2015., Sintesis Katalis Sn/Zeolit Dan Uji Aktivasi Pada Reaksi Esterifikasi Limbah Minyak Kelapa Sawit (Palm Sludge Oil), JKK, 4(1), 58–66.

Refbacks

  • There are currently no refbacks.