Biosensor DNA Elektrokimia untuk Deteksi Makanan Mengandung Babi (Sus scrofa) Menggunakan Screen Printed Carbon Electrode Termodifikasi Emas

Shabarni Gaffar, Annisa Ilma Naviardianti, Santhy Wyantuti, Yeni Wahyuni Hartati

Abstract

Metode deteksi berbasis deoxyribonucleic acid (DNA) merupakan metode yang paling akurat, spesifik, dan sensitif untuk mengidentifikasi adanya campuran komponen babi dalam produk pangan. Penelitian ini bertujuan untuk mengembangkan biosensor DNA secara elektrokimia menggunakan Screen Printed Carbon Elektrode termodifikasi emas (SPCE-Au) untuk mendeteksi DNA babi dalam makanan olahan. Permukaan SPCE dimodifikasi dengan emas menggunakan metode adsorbsi pasif, kemudian dikarakterisasi dengan Scanning Electron Microscopy (SEM) dan Differential Pulse Voltammetry (DPV). DNA probe yang spesifik terhadap DNA mitokondria babi diimobilisasi ke permukaan SPCE-Au melalui perantara gugus tiol. Proses hibridisasi DNA probe-DNA komplemen dikarakterisasi menggunakan DPV berdasarkan sinyal oksidasi guanin. Kondisi percobaan dioptimasi menggunakan desain eksperimen Box-Behnken, yaitu konsentrasi DNA probe (0,5; 1,0; 1,5 µg/mL), waktu imobilisasi DNA probe (10, 20, 30 menit), dan waktu hibridisasi DNA probe-DNA komplemen (5, 10, 15 menit). Kondisi optimum digunakan untuk menentukan respons arus oksidasi guanin menggunakan DPV terhadap variasi konsentrasi DNA komplemen. Selanjutnya, biosensor DNA diaplikasikan terhadap sampel bakso yang mengandung campuran daging babi, ayam, dan sapi. Hasil penelitian menunjukkan modifikasi SPCE dengan Au menghasilkan peningkatan arus yang diuji menggunakan sistem redoks K3[Fe(CN)6] secara DPV. Kondisi optimum percobaan adalah: konsentrasi DNA probe 1 µg/mL, waktu imobilisasi DNA probe 20 menit, dan waktu hibridisasi DNA probe-DNA komplemen 10 menit. Biosensor DNA ini memiliki batas deteksi 0,31 µg/mL, batas kuantifikasi 1,06 µg/mL dan recovery 99,2% untuk rentang konsentrasi 0,1 - 2 µg/mL. Deteksi sampel bakso menggunakan biosensor DNA menunjukkan peningkatan respons arus yang signifikan pada sampel yang mengandung 100% daging babi (3,417 µA) dan masih dapat mendeteksi adanya kandungan daging babi sampai 1%. Metoda biosensor DNA babi menggunakan SPCE-Au tanpa indikator dan biokonjugat yang dikembangkan lebih sederhana dan cepat dan mudah untuk diaplikasikan ke sampel nyata. 

Electrochemical DNA Biosensor for Detection of Pork (Sus scrofa) Using Gold Modified Screen Printed Carbon Electrode. The DNA-based detection method is the most accurate, specific, and sensitive method for identifying the presence of a mixture of pork components in food products. This study aims to develop an electrochemical DNA biosensor using a gold-modified Screen Printed Carbon Electrode (SPCE-Au) to detect pork DNA in processed food. The surface of the SPCE was modified with gold using a passive adsorption method, then characterized by scanning electron microscopy (SEM) and differential pulse voltammetry (DPV). The probe DNA specific to porcine mitochondrial DNA was immobilized to SPCE-Au surface via an intermediate thiol group. The hybridization of probe DNA-complement DNA was characterized using DPV based on the guanine oxidation signal. The experimental conditions were optimized using the Box-Behnken experimental design by applying probe DNA concentration (0.5; 1.0; 1.5 µg/mL), the immobilization of the probe DNA (10, 20, 30 minutes), and the hybridization of the probe DNA-complement DNA (5, 10, 15 minutes). The optimum conditions were used to determine the DPV current response vs. complementary DNA concentrations. Furthermore, the DNA biosensors were applied to meatball samples containing a mixture of pork, chicken, and beef. The results showed that modification of SPCE with Au produced an increase in current responses tested using K3[Fe(CN)6] redox system by DPV. The optimum conditions of the experiment were: probe DNA concentration was 1 µg/mL, time to immobilize probe DNA was 20 minutes, and time to hybridize probe DNA-complement DNA was 10 minutes. The limit of detection, limit of quantification and percent recovery of DNA biosensor was 0.31 µg/mL, 1.06 µg/mL and 99.2%, respectively. Detection of meatball samples by DNA biosensor showed a significant increase of current response for sample that contains 100% swine DNA (3.417 µA). The biosensor is still able to detect the pork content until 1%. The pork DNA biosensor using SPCE-Au without indicator and bioconjugate developed in this study is simpler and applicable to real samples.

 

Keywords

pork (Sus Scrofa); DNA biosensor; electrochemical; SPCE-Au; differential pulse voltammetry.

Full Text:

PDF

References

Adam, T.P, Kayleigh, K.F., Omar, N., and Rosalee, S.H., 2017. Comparison of Real-Time PCR and ELISA-based Methods for the Detection of Beef and Pork in Processed Meat Products. Food Control 71, 346–352. doi: 10.1016/j.foodcont.2016.07.017.

Ahmed, S.A., Pin, L.L., and Raabe, C.A., 2017. A Combined Rapid DNA Extraction and Multiplex PCR for the Detection of Porcine DNA in Raw and Processed Food. Contemporary Issues and Development in the Global Halal Industry, 201–208.

Ali, M.E., Hashim, U., Mustafa, S., Che-Man, Y.B., Dhahi, T.S., Kashif, M., Uddin, M.K., and Abd Hamid, S.B., 2012. Analysis of Pork Adulteration in Commercial Meatballs Targeting Porcine-Specific Mitochondrial Cytochrome B Gene by TaqMan probe Real-Time Polymerase Chain Reaction. Meat Sciences 91(4), 454–9. doi: 10.1016/j.meatsci.2012.02.031.

Ali, M.E., Hashim, U., Mustafa, S., and Che-Man, Y.B., 2011a. Swine-specific PCR-RFLP Assay Targeting Mitochondrial Cytochrome B Gene for Semiquantitative Detection of Pork in Commercial Meat Products. Food Analytical Methods 5, 613–623.

Ali, M.E., Hashim, U., Mustafa, S., Man, Y.B., Yusop, M.H., Bari, M.F., Islam, K.N., and Hasan, M.F., 2011b. Nanoparticle Sensor for Label Free Detection of Swine DNA in Mixed Biological Samples. Nanotechnology 22(19), 195503. doi: 10.1088/0957-4484/22/19/195503.

Barakat, H., El-Garhy, H.A., and Moustafa, M.M., 2014. Detection of Pork Adulteration in Processed Meat by Species-Specific PCR-QIAxcel Procedure Based on D-loop and cytb Genes. Applied Microbiology and Biotechnology 98(23), 9805–16. doi: 10.1007/s00253-014-6084-x.

Chan, K.F., Lim, H.N., Shams, N., Jayabal, S., Pandikumar, A., and Huang, N.M., 2016. Fabrication of Graphene/Gold-Modified Screen-Printed Electrode for Detection of Carcinoembryonic Antigen. Materials Science and Engineering 58, 666–674.

Emami, M., Shamsipur, M., and Irajirad, R., 2014. A Breast Cancer Biomarker Based on AntiHER2–iron Oxide Nanoparticle Bioconjugates. The Analyst 139, 2858–2866. doi: 10.1039/c4an00183d.

Fajriyah, M., Rohmatulloh, Y., Gaffar, S., Angraeni, A., and Hartati, Y.W., 2019. Electrochemical Biosensor for Mitochondrial DNA of Sus Scrofa Detection using A Cerium-Modified Screen Printed Carbon Electrode, Proceedings of the 1st International Conference on Islam, Science and Technology, ICONISTECH.

Ha, J., Kim, S., Lee, J., Lee, S., Lee, H., Choi, Y., Oh, H., and Yoon, Y., 2017. Identification of Pork Adulteration in Processed Meat Products using the Developed Mitochondrial DNA-based primers. Korean Journal of Food Science Anim Resource 37(3), 464–468. doi: 10.5851/kosfa.2017.37.3.464.

Hafidz, M.M.M., Makatar, W.H., Adilan, H., and Nawawee, T., 2020. Detection of Pork in Processed Meat Products by Species-Specific PCR for Halal Verification: Food Fraud Cases in Hat Yai, Thailand. Food Research 4 (S1), 244–249. doi: 10.26656/fr.2017.4(S1).S21.

Halid, N.I.A., Hasbullah, S.A., Ahmad, H., Heng, L.Y., Karim, N.H.A., and Harun, S.N., 2015. Electrochemical DNA Biosensor for Detection of Porcine Oligonucleotides using Ruthenium (II) Complex as Intercalator Redox. AIP Conference Proceedings 1614, 313. doi: 10.1063/1.4895214.

Hartati, Y.W., Suryani, A.A., Agustina, M., Gaffar, S., and Anggraeni, A., 2019. A Gold Nanoparticle–DNA Bioconjugate–Based Electrochemical Biosensor for Detection of Sus scrofa mtDNA in Raw and Processed Meat. Food Analytical Methods 12(11), 2591–2600.

Hartati, Y.W., Setiawati, T.A., Sofyatin, T., Fitrilawati, Anggraeni, A., and Gaffar, S., 2020. Electrochemical DNA Biosensor for Detection of Pork (Sus scrofa) using Screen Printed Carbon-Reduced Graphene Oxide Electrode, Science Asia 46, 72–79. doi: 10.2306/scienceasia1513-1874.2020.011.

Hu, C., Dou, W., and Zhao, G., 2014. Enzyme Immunosensor Based on Gold Nanoparticles Electroposition and Streptavidin-biotin System for Detection of S. pullorum and S. gallinarum. Electrochimica Acta 117, 239–245. doi: 10.1016/j.electacta.2013.11.132.

Kim, M., Yoo, I., Lee, S.Y., Hong, Y., and Kim, H.Y., 2016. Quantitative Detection of Pork in Commercial Meat Products by TaqMan® Real-Time PCR Assay Targeting the Mitochondrial D-loop region. Food Chemistry 210, 102–6. doi: 10.1016/j.foodchem.2016.04.084.

Kumar, A., Kumar, R.R., Sharma, B.D., Gokulakrishnan, P., Mendiratta, S.K., and Sharma, D., 2015. Identification of Species Origin of Meat and Meat Products on the DNA Basis: a review. Critical Reviews in Food Science and Nutrition 55(10), 1340–1351. doi: 10.1080/10408398.2012.693978.

Liu, Y., Dong, X., and Chen, P., 2012. Biological and Chemical Sensors Based on Graphene Materials. Chemical Society Reviews 41, 283–307. doi: 10.1039/C1CS15270J.

Lucarelli, F., Marrazza, G., Turner, A.P., and Mascini, M., 2004. Carbon and Gold Electrodes as Electrochemical Transducers for DNA Hybridisation Sensors. Biosensing and Bioelectronic 19(6), 515–30. doi: 10.1016/s0956-5663(03)00256-2.

Mandli, J., El Fatimi, I., Seddaoui, N., and Amine, A., 2018. Enzyme Immunoassay (ELISA/immunosensor) for a Sensitive Detection of Pork Adulteration in Meat. Food Chemistry 255, 380–389. doi: 10.1016/j.foodchem.2018.01.184.

Nakyinsige, K., Man, Y.B., and Sazili, A.Q., 2012. Halal Authenticity Issues in Meat and Meat Products. Meat Science 91(3), 207–14. doi: 10.1016/j.meatsci.2012.02.015.

Nguyen, H.D., Bui, T.A., Nguyen, P.T., Kim, O.T.P, and Vo, T.T.B., 2016. The Complete Mitochondrial Genome Sequence of the Indigenous I pig (Sus scrofa) in Vietnam. Asian-Australasian Journal of Animal Sciences 30(7), 930–937. doi: 10.5713/ajas.16.0608.

Parkash, O., Yean, C.Y., and Shueb, R.H., 2014. Screen Printed Carbon Electrode Based Electrochemical Immunosensor for the Detection of Dengue NS1 Antigen. Diagnostics 4, 165–180. doi: 10.3390/diagnostics4040165.

Piskata, Z., Servusova, E., Babak, V., Nesvadbova, M., and Borilova, G., 2019. The Quality of DNA Isolated from Processed Food and Feed via Different Extraction Procedures. Molecules 24(6), 1188. doi: 10.3390/molecules24061188.

Rana, S., Mittal, S.K., Singh, N., Singh, J., and Banks, C.E., 2017. Schiff Base Modified Screen Printed Electrode for Selective Determination of Aluminium(III) at Trace Level. Sensors and Actuators, B: Chemical. 239, 17–27. doi: 10.1016/j.snb.2016.07.133.

Rashid, J.I.A. and Yusof, N.A., 2017. The Strategies of DNA Immobilization and Hybridization Detection Mechanism in the Construction of Electrochemical DNA Sensor: A Review. Sensing and Bio-Sensing Research 16, 19–31. doi: 10.1016/j.sbsr.2017.09.001.

Rohman, A., Sismindari, Erwanto, Y., and Che Man, Y.B., 2011. Analysis of Pork Adulteration in Beef Meatball using Fourier Transform Infrared (FTIR) Spectroscopy. Meat Sciences 88(1), 91–95. doi: 10.1016/j.meatsci.2010.12.007.

Soman, M., Paul, R.J., Antony, M., and Padinjarattath, S.S., 2020. Detecting Mislabelling in Meat Products using PCR-FINS. Journal of Food Science Technology 57(11), 4286–4292. doi: 10.1007/s13197-020-04641-w.

Stachniuk, A., Sumara, A., Montowska, M., and Fornal, E., 2021. Liquid Chromatography-Mass Spectrometry Bottom-Up Proteomic Methods in Animal Species Analysis of Processed Meat for Food Authentication and the Detection of Adulterations. Mass Spectrometry Reviews 40(1), 3–30. doi: 10.1002/mas.21605.

Torelli, E., Manzano, M., and Marks, R.S., 2017. Chemiluminescent Optical Fibregenosensor for Porcine Meat Detection. Sensors Actuators B: Chemical 247, 868–874. doi: 10.1016/j.snb.2017.03.064.

Refbacks

  • There are currently no refbacks.