Produksi Bioetanol sebagai Energi Terbarukan dari Rumput Laut Ulva reticulata Asal Pulau Timor

Sefrinus Maria Dolfi Kolo, Jefry Presson, Pricilia Amfotis

Abstract

Rumput laut dengan kandungan karbohidrat dan lipid yang tinggi dianggap menjadi sumber energi terbarukan generasi ketiga. Penelitian ini bertujuan menentukan kadar gula pereduksi optimum, mengetahui tekstur permukaan serbuk sebelum dan sesudah hidrolisis serta menentukan kadar etanol hasil fermentasi. Kandungan karbohidrat rumput laut Ulva reticulata dapat dikonversi menjadi gula heksosa dan pentosa (glukosa, arabinosa, ramnosa, dan xilosa) melalui hidrolisis asam. Campuran gula optimum hasil proses hidrolisis kemudian dikonversi menjadi etanol menggunakan ragi Saccharomyces cerevisiae. Fermentasi dilakukan dengan konsentrasi inokulum 10% (v/v) selama 5 hari pada temperatur 30 °C dan pH 4,5. Analisis tekstur permukaan sampel dilakukan dengan Scanning Electron Microscopy (SEM). Analisis gula pereduksi dilakukan dengan metode DNS (Dinitro salisilat). Analisis etanol dilakukan dengan uji kualitatif dan kuantitatif menggunakan metode berat jenis dan kromatografi gas. Hasil penelitian menunjukkan bahwa kadar gula pereduksi meningkat seiring meningkatnya suhu hidrolisis pada suhu      75 °C ke 150 °C (2,3 – 23,7 g/L) dan mengalami penurunan kadar pada suhu 175 °C menjadi 17,1 g/L. Hasil analisis dengan variasi konsentrasi terhadap waktu 30, 40, 50, dan 60 menit terlihat bahwa kadar gula pereduksi meningkat seiring meningkatnya waktu hidrolisis dari 30 menit sampai 50 menit yakni 23,7 – 33,4 g/L dan mengalami penurunan pada waktu 60 menit yakni 19,2 g/L. Kadar gula pereduksi optimum sebesar 33,4 g/L  pada suhu 150 °C dengan konsentrasi asam 2 % pada waktu hidrolisis 50 menit. Tekstur permukaan serbuk sebelum dan sesudah hidrolisis mengalami perubahan yang signifikan. Hasil uji kualitatif etanol hasil fermentasi dibuktikan dengan adanya perubahan warna dari jingga menjadi biru. Hasil uji kadar etanol dengan metode berat jenis yakni sebesar 1% dan metode kromatografi gas sebesar 5,02%.

 

Bioethanol Production as Renewable Energy from Ulva Reticulata Seaweed from Timor Island. Seaweed with carbohydrate and lipid content is considered to be the third generation of renewable energy sources. The carbohydrate content of Ulva reticulata seaweed can be converted into hexose and pentose sugars (glucose, arabinose, ramnose, and xylose) through acid hydrolysis. The optimum sugar mixture resulting from the hydrolysis process is then converted to ethanol using Saccharomyces cerevisiae yeast. Fermentation was carried out with an inoculum concentration of 10% (v/v) for five days at a temperature of 30 °C and a pH of 4.5. Analysis of the surface texture of the sample was carried out by Scanning Electron Microscopy (SEM). Reducing sugar analysis was performed using the DNS (Dinitrosalicylate) method. Ethanol analysis was carried out by qualitative and quantitative tests using specific gravity and gas chromatography methods. The results showed that the reducing sugar content increased with increasing hydrolysis temperature at 75 °C to 150 °C (2.3 – 23.7 g/L) and decreased levels at 175 °C to 17.1 g/L. The results of the analysis with various concentrations of 30, 40, 50, and 60 minutes showed that reducing sugar levels increased with increasing hydrolysis time from 30 minutes to 50 minutes, namely 23.7 – 33.4 g/L and decreased at 60 minutes, namely 19.2 g/L. The optimum reducing sugar content was 33.4 g/L at 150 °C with an acid concentration of 2% at 50 minutes of hydrolysis. Powder surface texture before and after hydrolysis experienced significant changes. The qualitative test results of fermented ethanol are evidenced by a change in color from orange to blue. The results of the ethanol content test using the specific gravity method were 1%, and that using the gas chromatography method was 5.02%.

Keywords

bioethanol; delignification; fermentation; hydrolysis; Ulva reticulata.

Full Text:

PDF

References

Adini, S., Kusdiyantini, E., and Budiharjo, A. 2014. Produksi Bioetanol dari Rumput Laut dan Limbah Agar Gracilaria sp. dengan Metode Sakarifikasi yang Berbeda. Bioma : Berkala Ilmiah Biologi, 16(2): 65. doi: 10.14710/bioma.16.2.65-75.

Alfonsín, V., Maceiras, R., and Gutiérrez, C. 2019. Bioethanol Production from Industrial Algae Waste. Waste Management, 87: 791–797. doi: 10.1016/j.wasman.2019.03.019.

Bahroni, and Istianah. 2017. Pemanfaatan Buah Berenuk (Crescentia Cujete Linn) sebagai Bahan Baku Pembuatan Bioetanol. Program Studi Kimia, Fakultas Sains dan Teknologi, UIN Syarif Hidayatullah Jakarta, June, 1–7. doi: 10.17605/OSF.IO/2KXCV.

Jalilnejad, E., and Ghasemzadeh, K. 2019. Chapter 4 - Ethanol for Food or Transportation: A Kind of Competition (A. Basile, A. Iulianelli, F. Dalena, and T. N. B. T.-E. Veziroğlu (eds.); pp. 103–129). Elsevier. doi: 10.1016/B978-0-12-811458-2.00004-3.

Kolo, S. M. D., Wahyuningrum, D., and Hertadi, R. 2020. The Effects of Microwave-Assisted Pretreatment and Cofermentation on Bioethanol Production from Elephant Grass. International Journal of Microbiology, 2020. doi: 10.1155/2020/6562730.

Mathimani, T., and Pugazhendhi, A. 2019. Utilization Of Algae for Biofuel, Bio-Products and Bio-Remediation. Biocatalysis and Agricultural Biotechnology, 17: 326–330. doi: 10.1016/j.bcab.2018.12.007.

Murdiyatmo, U. 2006. Pengembangan Industri Ethanol : Prospek, Kendala dan Tantangan. Workshop Nasional Bisnis Biodiesel dan Bioethanol Di Indonesia, November: 80–86.

Nikolić, S., Mojović, L., Rakin, M., Vukašinović-Sekulić, M., Pejin, D., and Pejin, J. 2010. Improvement of Bioethanol Production from Corn by Ultrasound and Microwave Pretreatments. Chemical Engineering Transactions, 21(January): 1327–1332. doi: 10.3303/CET1021222.

Ningsih E. Setya. 2009. Optimasi Konsentrasi Molase dan pH terhadap Produksi Etanol Hasil Fermentasi pada Suhu 28 °C oleh Saccharomyces cerevisiae. Skripsi. Program Studi Ilmu Farmasi Fakultas Farmasi Universitas Sanata Dharma.

Novia, Wijaya, D., and Yanti, P. 2017. Pengaruh Waktu Delignifikasi terhadap Lignin dan Waktu SSF terhadap Etanol Pembuatan Bioetanol dari Sekam Padi. Teknik Kimia, 23(1): 19–27.

Park, J.-H., Hong, J.-Y., Jang, H. C., Oh, S. G., Kim, S.-H., Yoon, J.-J., and Kim, Y. J. 2012. Use of Gelidium Amansii as a Promising Resource for Bioethanol: A Practical Approach for Continuous Dilute-Acid Hydrolysis and Fermentation. Bioresource Technology, 108: 83–88. doi: 10.1016/j.biortech.2011.12.065

Rochman, N. N. 2015. Rencana Strategis Kementerian Energi dan Sumber Daya Mineral Direktorat Jenderal Minyak dan Gas Bumi. Kementerian Energi dan Sumber Daya Mineral Direktorat Jenderal Minyak dan Gas Bumi.

Susmiati, Y. 2011. Detoksifikasi Hidrolisat Asam dari Ubi Kayu dengan Metode Arang Aktif untuk Produksi Bioetanol. AGROINTEK, 5(1): 9–15.

Suutari, M., Leskinen, E., Fagerstedt, K., Kuparinen, J., Kuuppo, P., and Blomster, J. 2015. Macroalgae In Biofuel Production. In Phycological Research (Vol. 63). doi: 10.1111/pre.12078.

Teh, Y. Y., Lee, K. T., Chen, W. H., Lin, S. C., Sheen, H. K., and Tan, I. S. 2017. Dilute Sulfuric Acid Hydrolysis of Red Macroalgae Eucheuma denticulatum with Microwave-Assisted Heating for Biochar Production and Sugar Recovery. Bioresource Technology, 246: 20–27. doi: 10.1016/j.biortech.2017.07.101.

Wang, H., Maxim, M. L., Gurau, G., and Rogers, R. D. 2013. Microwave-Assisted Dissolution and Delignification Of Wood In 1-Ethyl-3-Methylimidazolium Acetate. Bioresource Technology, 136: 739–742. doi: 10.1016/j.biortech.2013.03.064.

Windarti, A., Novia, and Rosmawati. 2014. Pembuatan Bioetanol dari Jerami Padi dengan Metode Ozonolisis-Simultaneous an Fermentation (SSF) –. Jurnal Teknik Kimia, 20(3): 38–48.

Xiang, Q., Lee, Y. Y., Petterson, P. O., and Torget, R. W. 2003. Heterogeneous Aspects Of Acid Hydrolysis Of Α-Cellulose. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 107(1–3): 505–514. doi: 10.1385/ABAB:107:1-3:505.

Yadav, K. S., Naseeruddin, S., Prashanthi, G. S., Sateesh, L., and Rao, L. V. 2011. Bioresource Technology Bioethanol Fermentation of Concentrated Rice Straw Hydrolysate Using Co-Culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresource Technology, 102(11): 6473–6478. doi: 10.1016/j.biortech.2011.03.019.

Yu-Qing, T., Mahmood, K., Shehzadi, R., and Ashraf, M. F. 2016. Ulva Lactuca and Its Polysaccharides: Food and Biomedical Aspects. In Journal of Biology, Agriculture and Healthcare (Vol. 6).

Yu, K. L., Chen, W. H., Sheen, H. K., Chang, J. S., Lin, C. S., Ong, H. C., Show, P. L., and Ling, T. C. 2020. Bioethanol Production from Acid Pretreated Microalgal Hydrolysate Using Microwave-Assisted Heating Wet Torrefaction. Fuel, 279(May): 118435. doi: 10.1016/j.fuel.2020.118435.

Refbacks

  • There are currently no refbacks.