Identifikasi Aktivitas Inhibitor Enzim Tirosinase Senyawa Turunan Flavonoid pada Kulit Buah Cokelat (Theobroma cacao L) secara In Silico
Abstract
Limbah kulit buah cokelat diketahui mengandung berbagai senyawa aktif, termasuk di antaranya adalah golongan flavonoid. Senyawa flavonoid diketahui berpotensi memiliki aktivitas inhibitor enzim tirosinase, suatu enzim yang menstimulasi proses pembentukan melanin. Penelitian ini bertujuan untuk mengevaluasi interaksi antara senyawa flavonoid dari kulit buah cokelat dengan enzim tirosinase menggunakan metode penambatan molekuler secara in silico. Pengujian dilakukan dengan beberapa tahapan yakni preparasi makromolekul enzim, pemodelan molekul senyawa uji, identifikasi sisi aktif molekul enzim, identifikasi dan evaluasi penambatan molekuler, serta simulasi dinamika molekuler senyawa uji dengan molekul enzim. Hasil simulasi penambatan molekuler antara molekul enzim dengan ligan alaminya yakni tirosin memberikan energi ikatan sebesar -4,91 kkal/mol. Senyawa flavonoid dari kulit buah cokelat yakni apigenin, epikatekin, katekin, kaemferol, kuersetin, dan kuersitrin diketahui memiliki afinitas pada sisi aktif enzim tirosinase dengan energi ikatan berturut turut -6,14; -6,17; -6,01; -5,89; -6,13; -6,81 kkal/mol. Hasil simulasi dinamika molekuler menunjukkan kuersitrin memiliki stabilitas yang baik dengan nilai RMSD rata-rata dan nilai energi bebas ikatan MM/PBSA masing-masing sebesar ±1,73 Å dan -80,12 kJ/mol. Hasil penelitian menunjukkan bahwa senyawa turunan flavonoid tersebut mampu berikatan dengan sisi aktif enzim tirosinase dengan afinitas yang lebih baik dibandingkan dengan ligan alaminya diamati dari nilai energi ikatannya. Senyawa turunan flavonoid yang terkandung dalam kulit buah cokelat berpotensi menjadi inhibitor kompetitif dari enzim tirosinase.
Identification of In Silico Tyrosinase Inhibitory Activity of Flavonoid Derivative Compounds in Cocoa Pod Husk (Theobroma cacao L.). Cocoa pod husk was known to contain several active compounds, such as flavonoids. Flavonoid compounds are known to potentially have inhibitory activity of the tyrosinase, the enzyme which stimulates melanin synthesis.This study was conducted to evaluate the molecular interaction between flavonoids from cocoa pod husk with tyrosinase enzyme using in silico molecular docking method. The study was carried out through several stages, including preparation of enzyme macromolecules, modeling the molecule of the test compound, identifying the active site of the enzyme molecule, identifying and evaluating molecular docking, and molecular dynamics simulations of the test compound with the enzyme molecule. Molecular docking simulation between the enzyme and its natural ligand (tyrosine) produces binding energy of -4.91 kcal/mol. Flavonoid compounds from cocoa pod husk, including apigenin, epicatechin, catechin, kaempferol, quercetin, dan quercitrin, have an affinity on the active site of the enzyme with binding energy were -6.14; -6.17; -6.01; -5.89; -6.13; -6.81 kcal/mol, respectively. Then the molecular dynamics simulation shows quercitrin has good stability interaction with the average RMSD value and the MM/PBSA binding-free energy values of ±1.73 Å and -80.12 kJ/mol, respectively. The results showed that flavonoids of cocoa pod husc extract have an affinity to the active site of the enzyme, with a stronger binding energy than the original ligand. The flavonoid compounds of cocoa pod husk potential as a competitive inhibitor of the tyrosinase enzyme.
Keywords
Full Text:
PDFReferences
Abdul Karim, A., Azlan, A., Ismail, A., Hashim, P., Abd Gani, S. S., Zainudin, B. H., and Abdullah, N. A., 2014. Phenolic Composition, Antioxidant, Anti-Wrinkles and Tyrosinase Inhibitory Activities of Cocoa Pod Extract. BMC Complementary and Alternative Medicine 14(1), 1-13. doi: 10.1186/1472-6882-14-381.
Adnyani, K. D., Lestari, L. W. E., Prabowo, H., Siaka, P. A. I. A., and Laksmiani, N. P. L., 2019. Aktivitas dari Kuersetin Sebagai Agen Pencerah Kulit Secara in silico. Jurnal Kimia 13(2), 207-212. doi: 10.24843/jchem.2019.v13.i02.p14.
Al-Khafaji, K., and Taskin Tok, T., 2020. Molecular Dynamics Simulation, Free Energy Landscape and Binding Free Energy Computations in Exploration the Anti-Invasive Activity of Amygdalin Against Metastasis. Computer Methods and Programs in Biomedicine 195, 105660. doi: 10.1016/j.cmpb.2020.105660.
Asadzadeh, A., Fassihi, A., Yaghmaei, P., and Pourfarzam, M., 2015. In silico Approach for Designing Potent Inhibitors Against Tyrosinase. Biosciences Biotechnology Research Asia, 12. doi: 10.13005/bbra/2188.
Campos-Vega, R., Nieto-Figueroa, K. H., and Oomah, B. D., 2018. Cocoa (Theobroma cacao L.) Pod Husk: Renewable Source of Bioactive Compounds. Trends in Food Science and Technology 81, 172-184. doi: 10.1016/j.tifs.2018.09.022.
Chang, T. S., 2009. An Updated Review of Tyrosinase Inhibitors. International Journal of Molecular Sciences, 10, 2440-2475. doi: 10.3390/ijms10062440.
Dahmani, K., Galai, M., Ouakki, M., Cherkaoui, M., Touir, R., Erkan, S., Kaya, S., and El Ibrahimi, B., 2021. Quantum Chemical and Molecular Dynamic Simulation Studies for the Identification of the Extracted Cinnamon Essential Oil Constituent Responsible for Copper Corrosion Inhibition in Acidified 3.0 Wt% NaCl Medium. Inorganic Chemistry Communications, 124, 108409. doi: 10.1016/j.inoche.2020.108409.
De, B., Adhikari, I., Nandy, A., Saha, A., and Goswami, B. B., 2018. In silico Modelling of Azole Derivatives With Tyrosinase Inhibition Ability: Application of the Models for Activity Prediction of New Compounds. Computational Biology and Chemistry, 74, 105-114. doi: 10.1016/j.compbiolchem.2018.03.007.
Fakih, T. M., and Dewi, M. L., 2020. In silico Identification of Characteristics Spike Glycoprotein of SARS-CoV-2 in the Development Novel Candidates for COVID-19 Infectious Diseases. Journal of Biomedicine and Translational Research 6(2), 48-52. doi: 10.14710/jbtr.v6i2.7590.
Fakih, T. M., Dewi, M. L., and Syahroni, E., 2020. Magainin as an Antiviral Peptide of SARS-CoV-2 Main Protease for Potential Inhibitor: An In silico Approach. Biogenesis: Jurnal Ilmiah Biologi 8(1), 104-110. doi: 10.24252/bio.v8i1.13871.
Fujieda, N., Umakoshi, K., Ochi, Y., Nishikawa, Y., Yanagisawa, S., Kubo, M., Kurisu, G., and Itoh, S., 2020. Copper–Oxygen Dynamics in the Tyrosinase Mechanism. Angewandte Chemie - International Edition 132(32), 13487-13492. doi: 10.1002/anie.202004733.
Gaillard, T., 2018. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark. Journal of Chemical Information and Modeling 58(8), 1697-1706. doi: 10.1021/acs.jcim.8b00312.
Gao, H., Nishida, J., Saito, S., and Kawabata, J., 2007. Inhibitory Effects Of 5,6,7-Trihydroxyflavones on Tyrosinase. Molecules 12(1), 86-97. doi: 10.3390/12010086.
Hevener, K. E., Zhao, W., Ball, D. M., Babaoglu, K., Qi, J., White, S. W., and Lee, R. E., 2009. Validation Of Molecular Docking Programs For Virtual Screening Against Dihydropteroate Synthase. Journal of Chemical Information and Modeling 49(2), 444-460. doi: 10.1021/ci800293n.
Irondi, A. E., Olawuyi, A. D., Lawal, B. S., Boligon, A. A., Olasupo, F., and Olalekan, S. I., 2019. Comparative Inhibitory Effects Of Cocoa Bean and Cocoa Pod Husk Extracts on Enzymes Associated With Hyperuricemia and Hypertension in Vitro. International Food Research Journal 26(2), 557-564.
Kim, D., Park, J., Kim, J., Han, C., Yoon, J., Kim, N., Seo, J., and Lee, C., 2006. Flavonoids as Mushroom Tyrosinase Inhibitors: A Fluorescence Quenching Study. Journal of Agricultural and Food Chemistry 54(3), 935-941. doi: 10.1021/jf0521855.
Ma, F., Zhao, Y., Gong, X., Xie, Y., and Zhou, X., 2014. Optimization of Quercitrin and Total Flavonoids Extraction from Herba Polygoni Capitati by Response Surface Methodology. Pharmacognosy Magazine 10(40), 385. doi: 10.4103/0973-1296.127343.
Md Yusof, A. H., Abd Gani, S. S., Zaidan, U. H., Halmi, M. I. E., and Zainudin, B. H., 2019. Optimization of an Ultrasound-Assisted Extraction Condition for Flavonoid Compounds from Cocoa Shells (Theobroma cacao) Using Response Surface Methodology. Molecules (Basel, Switzerland) 24(4), 711. doi: 10.3390/molecules24040711.
Muchtaridi, M., Jajuli, M., and Yusuf, M., 2018. Antagonistic Mechanism of Chalcone Derivatives Against Human Estrogen Alpha of Breast Cancer Using Molecular Dynamic Simulation. Oriental Journal of Chemistry 34(6), 2735. doi: 10.13005/ojc/340607.
Muhammad, S., and Fatima, N., 2015. In silico Analysis and Molecular Docking Studies of Potential Angiotensin-Converting Enzyme Inhibitor Using Quercetin Glycosides. Pharmacognosy Magazine 11(Suppl 1), S123. doi: 10.4103/0973-1296.157712.
Nesterov, A., Zhao, J., and Jia, Q., 2008. Natural Tyrosinase Inhibitors for Skin Hyperpigmentation. Drugs of the Future 33, 945-954. doi: 10.1358/dof.2008.033.11.1254240.
Nguyen, H. X., Nguyen, N. T., Nguyen, M. H. K., Le, T. H., Do, T. N., Hung, T. M., and Nguyen, M. T. T., 2016. Tyrosinase Inhibitory Activity of Flavonoids from Artocarpus heterophyllous. Chemistry Central Journal 10(1), 1-6. doi: 10.1186/s13065-016-0150-7.
Nieuweboer-Krobotova, L., 2013. Hyperpigmentation: Types, Diagnostics and Targeted Treatment Options. Journal of the European Academy of Dermatology and Venereology 27, 2-4. doi: 10.1111/jdv.12048.
Priani, S. E., Aprilia, S., Aryani, R., and Purwanti, L., 2019. Antioxidant and Tyrosinase Inhibitory Activity of Face Serum Containing Cocoa Pod Husk Phytosome (Theobroma cacao L.). Journal of Applied Pharmaceutical Science 9(10), 110-115. doi: 10.7324/JAPS.2019.91015.
Ramadhan, D. S. F., Fakih, T. M., and Arfan, A., 2020. Activity Prediction of Bioactive Compounds Contained in Etlingera Elatior Against the SARS-CoV-2 Main Protease: An in silico Approach. Borneo Journal of Pharmacy 3(4), 235-242. doi: 10.33084/bjop.v3i4.1634.
Senol, F., Khan, M., Orhan, G., Gurkas, E., Orhan, I., Oztekin, N., and Ak, F., 2014. In silico Approach to Inhibition of Tyrosinase by Ascorbic Acid Using Molecular Docking Simulations. Current Topics in Medicinal Chemistry 14(12), 1469-1472. doi: 10.2174/1568026614666140610121253.
Şöhretoğlu, D., Sari, S., Barut, B., and Özel, A., 2018. Tyrosinase Inhibition by Some Flavonoids: Inhibitory Activity, Mechanism by in Vitro and in silico Studies. Bioorganic Chemistry 81, 168-174. doi:
1016/j.bioorg.2018.08.020.
Xie, L., Chen, Q., Huang, H., Wang, H., and Zhang, R., 2003. Inhibitory Effects of Some Flavonoids on the Activity of Mushroom Tyrosinase. Biochemistry 68(4), 487-491. doi: 10.1023/A:1023620501702.
Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., and Saboury, A. A., 2019. A Comprehensive Review on Tyrosinase Inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 34(1), 279-309. doi: 10.1080/14756366.2018.1545767.
Refbacks
- There are currently no refbacks.