SYNTHESIS AND CHARACTERIZATION OF Fe2O3 NANOPARTICLES USING Averrhoa bilimbi AS BIOMATERIAL CHELATING AGENT FOR NANOFLUIDS APPLICATION

Arie Hardian, Alvi Aristia Ramadhiany, Dani Gustaman Syarif, Senadi Budiman

Abstract

The aim of this work was to determine the effect of calcination temperature on the characteristics of Fe2O3 nanoparticles (NPs) in sol-gel synthesis. The obtained Fe2O3 NPs was then used as material for preparation of Fe2O3-water nanofluids. Nanofluids is a mixture between basic fluid like water and 1 - 100 nm solid particles (nanoparticles). Nanoparticles of Fe2O3 have been synthesized from the local mineral Jarosite using sol-gel method by using starfruit (Averrhoa bilimbi) extracts as the chelating agent. The calcination temperature was then varied from 500 ºC to 700 ºC for 5 hours. Based on the X-Ray Diffraction (XRD) analysis, the diffraction pattern of obtained Fe2O3 was relevant with the JCPDS data No. 33-0664 for α-Fe2O3 with hexagonal crystallite system. The crystallite size (Scherrer’s Equation) of obtained α-Fe2O3 nanoparticles at calcination temperatures of 500 ºC, 600 ºC and 700 ºC was 50 nm, 48 nm and 40 nm, respectively. The Surface Area of Fe2O3 NPs at temperature of 500 ºC, 600 ºC and 700 ºC was 45.45 m2/g; 26.91 m2/g and 17.51 m2/g, respectively. Fe2O3-water nanofluids was relativly stable with zeta potential of -39.60 mV; -46.37 mV and -41.57 mV, respectively for 500 ºC, 600 ºC and 700 ºC calcination temperature. The viscosity of Fe2O3-water nanofluids was higher than the viscosity of water. The critical heat flux (CHF) value of water-Fe2O3 nanofluids was higher than the CHF water. The highest CHF value for nanofluids was obtained by using α-Fe2O3 nanoparticles with calcination temperature of 600 ºC which 34.99 % of increment compare to the base fluid (water).

Keywords

chelating agent; nanofluids; nanoparticles α-Fe2O3; sol-gel; starfruit.

Full Text:

PDF

References

Abareshi, M., Goharshadi, E. K., Zebarjad, S. M., Fadafan, H. K., and Youssefi, A., 2010. Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluidss. Journal of Magnetism and Magnetic Materials 322, 3895-3901.

Abrahamson, H. B., Rezvani, A. B., and Brushmiller, J. G., 1994. Photochemical and spectroscopic studies of complexes of iron (III) with citric acid and other carboxylic acids. Inorganica Chimica Acta 226, 117-127.

Aghayari, R., Maddah, H., Baghbani, A.J., Mohammadiun, H., and Nikpanje, E., 2015. An experimental investigation of heat transfer of Fe2O3/Water nanofluid in a double pipe heat exchanger. International Journal of Nano Dimension 6(5), 517–524.

Bagheri, S., Chandrappa, K. G., and Sharifah, B. A. H., 2013. Generation of Hematite Nanoparticles via Sol-Gel Method. Research Journal of Chemical Sciences 3(7), 62-68.

Bahadur, D., Rajakumar, S., and Kumar. A., 2006. Influence of fuel ratios on auto combustion synthesis of barium ferrite nano particles. Journal of Chemical Sciences 118(1), 15-21.

Choi, U. S., France, D. M., and Knodel, B. D., 1992. Impact of Advanced Fluids on Costs of District Cooling Systems. Proc. 83rdAnn. Int. District Heating and Cooling Assoc. Conf., Danvers, MA, June 13-17, The Int. District Heating and Cooling Assn., Washington, DC, pp. 343-359.

Choi, U. S., 1995. Enhancing Thermal Conductivity of Fluids with Nanoparticles, Development and Applications of Non-Newtonian Flows. ASME Journal of Heat Transfer 66, 99-105.

Colla, L., Fedelle, M., Scattolini, M., and Bobbo, S., 2012. Water-Based Fe2O3 Nanofluid Characterization : Thermal Conductivity and Viscosity Measurements and Correlation. Hindawi Publishing Corporation Advances in Mechanical Engineering 2012, 8.

Hu, Z. S. and Dong, J. X., 1998. Study on Antiwear and Reducing Friction Additive of Nanometer Titanium Oxide. Wear 216(1), 92–96.

Hiswankar, S. C., and Kshirsagar, J. M., 2013. Determination of Critical Heat Flux in Pool Boiling Using ZnO Nanofluids. International Journal of Engineering Research and Technology 2(7), 2091-2095.

Indriyani, R., 2015. Sintesis Nanopartikel CdS Menggunakan Amilum Sebagai Capping Agent Dengan Metode Sol-Gel. Skripsi. Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahua Alam, Universitas Negeri Yogyakarta. Yogyakarta.

Irham, M. F., Hamidi, N., and Wahyudi, S. 2012. Pengaruh Prosentase Nanopartikel Dalam Media Pendingin Terhadap Laju Perpindahan Panas Pada Suhu Dinding Konstan. Skripsi. Malang.

Lathifah, Q. A. 2008. Uji Efektivitas Ekstrak Kasar Senyawa Antibakteri pada Buah Belimbing Wuluh (Averrhoa bilimbi L.) dengan Variasi Pelarut. Skripsi. Program Studi Kimia, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang. Malang.

Li, L. C. and Tian, Y., 2007. Zeta Potential Encyclopedia of Pharmaceutycal Technology. New York : Marcel Dekker. pp. 429–458.

Mikrajuddin, A., 2010. Karakterisasi Nanomaterial. Bandung. CV. Rezeki Putera.

Novanda, T., 2015. Pengaruh penggunaan ekstrak belimbing wuluh (Averrhoa bilimbi) dalam sintesis nanopartikel ceria terdoping neodimium 20 %. Skripsi. Program Studi Kimia, Universitas Jenderal Achmad Yani. Cimahi.

Patel, H. K. and Bartaria, V. N., 2014. Review and Experimental Comparison of Al2O3 and Water Mixture Based Nanofluid Thermal Conductivity as Heat. IPASJ International Journal of Mechanical Engineering 2(9), 25–31.

Permana, A., Fauzan, A., and Christiand. 2011. Aplikasi Nanofluida pada Radiator. Departemen Teknik Mesin, Universitas Indonesia. Depok.

Ramadhan, A. I., 2012. Analisis Perpindahan Panas Fluida Pendingin Nanofluida Di Teras Reaktor Air Tekan (Pressurized Water Reactor) Dengan CFD Code. Tesis. Universitas Pancasila. Jakarta.

Rainho, N. A., Heitich, L. V., Passos, J. C., Klein, A. N., Morastoni, B., and Pacheco, A. L. P., 2010. Effect Of Pool Boiling Using Al2O3-Water And Fe2O3-Water A Nanofluids O Heat Transfer. VI Congresso Nacional De Engenharia Mecânica. 18 a 21 de agosto de 2010 – Campina Grande – Paraíba - Brasil.

Rosiana, H., 2005. Analisis Viskositas Sukardjo. 2003. Rineka Cipta. Jakarta.

Safee, N. H. A., Abdullah., M. P., and Othman. M. R., 2009. Synthesis and Characterization of Carbocymethyl Chitosan-Fe3O4 Nanoparticles. Prosiding Seminar Kimia Bersama UKM-ITB VIII, 9-11 Juni 2009. pp : 474-479.

Samat A. N., and Nor, M. D. R., 2013. Sol – gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts. Ceramics International 39, S545–S548.

San, F. P., Zulkifli, M., and Subaer, 2015. Sintesis dan Karakterisasi Struktur Mikro Komposit Geopolimer Nanopartikel Fe2O3. Prosiding Pertemuan Ilmiah XXIX HFI DIY & JATENG. pp. 174–177.

Sukardjo. 2003. Kimia Fisika. Rineka Cipta. Jakarta.

Syarif, G.D., and Prajitno, H.D., 2013. Characteristics of Water-ZrO2 Nanofluid Made from Solgel Synthesized ZrO2 Nanoparticle Utilizing Local Zircon. Journal of Materials Science and Engineering B 3(2), 124–129.

Syarif, G.D., and Prajitno, D.H., 2015. Synthesis and Characterization of Fe3O4 Nanoparticles and water-Fe3O4 Nanofluids. The 10th International Forum on Strategic Technology. Universitas Gadjah Mada, Indonesia. pp. 342–346.

Xiang-Qi, W., and Arun S.M., 2008. A review on nanofluids : Theoritical and numerical investigation. Brazilian Journal of Chemical Engineering 25(4), 613 – 630.

Refbacks

  • There are currently no refbacks.