Recovery Emas dalam Sistem Au tunggal dan Sistem Multilogam (Au/Cu) Menggunakan Adsorben Asam Askorbat Termodifikasi Magnetit

Maya Rahmayanti


Limbah elektronik mengandung banyak logam yang bernilai guna antara lain tembaga (Cu), besi (Fe), timah (Sn), timbal (Pb), seng (Zn), emas (Au) dan perak (Ag). Di antara logam tersebut, logam yang memiliki nilai ekonomi tertinggi dan banyak disimpan sebagai investasi kekayaan dalam jangka panjang adalah emas (Au), namun jumlah kandungan emas dalam elektronik lebih kecil dibandingkan logam yang lain. Penelitian ini merupakan studi pendahuluan recovery emas dari limbah elektronik. Studi diawali dengan mempreparasi asam askorbat termodifikasi magnetit (Fe3O4/AA) dan digunakan sebagai adsorben Au dalam sampel simulasi. Sampel simulasi terdiri dari sistem Au tunggal (larutan HAuCl4-) dan sistem multilogam (Au/Cu). Pengaruh pH larutan HAuCl4- terhadap kemampuan adsorpsi [AuCl4]-, kinetika dan isoterm adsorpsidipelajari pada sistem Au tunggal. Sementara itu, pengaruh keberadaan ion logam Cu terhadap kemampuan Fe3O4/AA untuk recovery emas dipelajari dalam sistem multilogam (Au/Cu). Metode yang digunakan dalam penelitian ini adalah metode batch. Hasil penelitian menunjukkan bahwa adsorpsi [AuCl4]- pada Fe3O4/AA optimum pada pH 4 dan kesetimbangan adsorpsi tercapai pada jam ke-30. Model kinetika adsorpsi mengikuti model kinetika pseudo orde dua Ho dan model isoterm adsorpsi mengikuti model isoterm Langmuir dengan kapasitas adsorpsi sebesar 0,09900 mol/g. Keberadaan ion logam Cu berpengaruh terhadap kemampuan Fe3O4/AA dalam mengadsorpsi [AuCl4]- dalam sistem multilogam (Au/Cu). 

Gold Recovery in a Single Au and Multi-metal (Au/Cu) Systems Using Ascorbic Acid-Modified Magnetite Adsorbent. Electronic waste contains many valuable metals, including copper (Cu), iron (Fe), lead (Sn), lead (Pb), zinc (Zn), gold (Au), and silver (Ag). Among these metals, the metal that has the highest economic value and can be stored for a long-term wealth investment is gold (Au), but the amount of gold content in electronic devices is smaller than other metals. This research was a preliminary study of gold recovery from electronic waste. The study began by preparing magnetite-modified ascorbic acid (Fe3O4/AA) and was used as an adsorbent agent of gold in a simulated sample. The simulation sample consisted of a single Au system (HAuCl4- solution) and a multi-metal system (Au/Cu). The effect of pH of the HAuCl4- solution on the ability of [AuCl4]- adsorption, kinetic and isotherm adsorptions were studied in a single Au system. Meanwhile, the effect of the Cu metal ions content on Fe3O4/AA capacity for gold recovery was studied in a multi-metal system. The method used in this research was the batch method. The results showed that optimum adsorption of [AuCl4]- onto Fe3O4/AA at pH 4 and adsorption equilibrium was reached at 30 hours. The adsorption kinetics model followed the second-order pseudo-Ho kinetics model, and the adsorption isotherm model followed the Langmuir isotherm model with an adsorption capacity of 0.09900 mol/g. The presence of Cu metal ions affected the capacity of Fe3O4/AA in the [AuCl4]-adsorption in a multi-metal system (Au/Cu).


adsorpsi, asam askorbat, limbah elektronik, magnetit, sistem tunggal, sistem multilogam

Full Text:



Alorro, RD., Hiroyoshi, N., Kijitani, H., Ito, M. and Tsunekawa, M., 2010. On The Use of Magnetite for Gold Recovery From Chloride Solution. Mineral Processing and Extractive Metallurgy Review 31(4), 201-213. doi: 10.1080/08827508.2010.483359.

Freundlich, H.M.F., 1906. Ueber die Adsorption in Loesungen (Adsorption in Solution). Zeitschrift fuer Physikalische Chemie 57, 385-470.

Ho, Y., 2006. Review of Second-Order Models for Adsorption System. Journal of Hazardous Materials 36, 681-689. doi: 10.1016/j.jhazmat.2005.12.043.

Istiningrum, R.B., Tiwow, C.D., Nuryono, and Narsito, 2015. Au(III) Selective Adsorption of Quaternary Ammonium-Silica Hybrid in Au/Cu System. Procedia Chemistry 17, 132–138. doi: 10.1016/j.proche.2015.12.126.

Jingjing, W., Dengxi, L., Yuan, Y., and Yingchen, Z., 2011. Preparation of Fe3O4 Nanoparticles by Use of Catalytically Oxidized Liquids of Cyanide Tailings by NOx and Research of Its Adsorption Properties. Energy Procedia 11,3389-3396. doi: 10.1016/j.egypro.2011.10.700.

Langmuir, I. 1916. The Constitution and Fundamental Properties of Solids and Liquids.

Journal of the American Chemical Society 38, 2221-2295. doi: 10.1021/ja02268a002.

Moffat, A., David, M., and Widdop, B., 2011. Clarke’s Analysis of Drugs and Poisons, 4th edition. Pharmaceutical Press, London.

Paclawski, K., and Fitzner, K., 2004. Kinetic of Gold (III) Chloride Complex Reduction Using Sulfur (IV). Metallurgical and Materials Transactions B 35, 1071-1085. doi: 10.1007/s11663-004-0063-z.

Rahmayanti, M., Santosa, S.J., Sutarno. 2015. Sonochemical Co-precipitation Synthesis of Gallic Acid-modified Magnetite. Advanced Materials Research1101, 286-289. doi: 10.4028/

Rahmayanti, M., Santosa, S.J., Sutarno. 2016a. Mechanisms of Gold Recovery From Aqueous Solutions Using Gallic acid-modified Magnetite Particles Synthesized Via Reverse Co-precipitation Method.International Journal of ChemTech Research 9(4), 446-452.

Rahmayanti, M., Santosa, S.J., Sutarno. 2016b. Comparative Study on the Adsorption of [AuCl4]– onto Salicylic Acid and Gallic Acid Modified Magnetite Particles. Indonesian Journal of Chemistry 16, 329-337. doi: 10.22146/ijc.21150.

Santosa, S.J., Sudiono, S., Siswanta, D., Kunarti, E.S. dan Dewi, S.R., 2011. Mechanism of AuCl4- Removal from Aqueous Solution by Means of Peat Soil Humin. Adsorption Science and Technology 29(8), 733-746. doi: 10.1260/0263-6174.29.8.733.

Santosa, S.J, Fitriani, D., Aprilita, N.H., Rusdiarso, B., 2019. Gallic and Salicylic Acid-Functionalized Mg/Al Hydrotalcite as Highly EffectiveMaterials for Reductive Adsorption of AuCl4-. Applied Surface Science 507, 1-10.doi: 10.1016/j.apsusc.2019.145115.

Zhou, Y., Zhang, Y., Li, G. and Jiang, T., 2015. A Further study on Adsorption Interaction of Humic Acid on Natural Magnetite, Hematite and Quartz in Iron Ore Pelletizing Process: Effect of The Solution pH Value. Powder Technology271, 155-166. doi: 10.1016/j.powtec.2014.10.045.

Vilela, P.B., Matiasa, C.A., Dalaliberaa, A., Becegatoa, V.A., Paulinoa, A.T., 2019. Polyacrylicacid-based and chitosan-based hydrogels for adsorption of cadmium: Equilibrium isotherm, kinetic and thermodynamic studies. Journal of Environmental Chemical Engineering 7(5), 1-13. doi: 10.1016/j.jece.2019.103327.


  • There are currently no refbacks.