Modifikasi Zeolit Alam Ende dengan Garam Logam serta Potensinya Sebagai Katalis Transformasi Glukosa Menjadi 5-Hidroksimetilfurfural (HMF)

Dessy Dwi Septian, Sri Sugiarti

Abstract

Ketersediaan biomassa yang melimpah berpotensi menjadi bahan baku dalam pembuatan bahan bakar atau senyawa kimia lain. Salah satu senyawa penyusun biomassa, yaitu glukosa, berpotensi diubah menjadi berbagai senyawaan kimia melalui pembentukan senyawa antara furan. Senyawa furan yang menjadi sasaran pada penelitian ini ialah 5-hidroksimetilfurfural (HMF) yang juga memerlukan katalis dalam proses pembentukkannya dari glukosa. Katalis yang digunakan pada penelitian ini adalah katalis heterogen dari zeolit alam Ende yang mengemban lima jenis ion logam dengan konsentrasi 1 − 3% (b/v). Pengembanan logam dilakukan untuk melihat perbedaan aktivitas katalitik zeolit dengan dan tanpa ion logam, dan sebagai model pemanfaatan zeolit alam yang telah difungsikan sebagai adsorben logam. Pengembanan logam dilakukan dengan metode pertukaran ion sebagai representasi dari proses adsorpsi. Transformasi glukosa menjadi HMF dilakukan menggunakan metode hidrotermal pada suhu 180 °C dalam pelarut aseton:air (2:1) (v/v) dengan perbandingan substrat:katalis 15:1 (b/b). Zeolit alam Ende dalam bentuk asam dapat membantu transformasi glukosa dengan rendemen HMF 24,86%, sementara logam Cr saja menghasilkan rendemen 44,37%. Zeolit yang diembankan logam Cr menghasilkan rendemen 32,78%, dan semakin banyak logam yang diembankan dalam zeolit menunjukkan penurunan aktivitas katalitiknya. Rendemen HMF tertinggi ditunjukkan pada penggunaan katalis Mn-zeolit dan Ni-zeolit dengan rendemen berturut-turut 35,17% dan 38,68%.

Keywords

glukosa, HMF, hidrotermal, pengembanan logam, zeolit alam ende

Full Text:

PDF

References

Assary, R.S., Kim, T., Low, J.J., Greeley, J., Curtiss, L.A., 2012. Glucose and Fructose to Platform Chemicals: Understanding The Thermodynamic Landscapes to Acid Catalyzed Reaction using High Level Ab-Initio Methods. Physical Chemistry Chemical Physics 14, 16603–16611. doi: 10.1039/c2cp41842h.

Aylak, A.R., Akmaz, S., Koc, S.N., 2016. An Efficient Heterogeneous CrOx-Y Zeolite Catalyst for Glucose to HMF Conversion in Ionic Liquids. Particulate Science and Technology 35, 1–17. doi: 10.1080/02726351.2016.1168895.

Covarrubias, C., Garcia, R., Arriagada, R., Yanez, J., Garland, M.T., 2006. Cr(III) Exchange on Zeolites Obtained from Kaolin and Natural Mordenite. Microporous and Mesoporous Materials 88, 220–231. doi: 10.1016/j.micromeso.2005.09.007.

Eminov, S., Filippousi, P., Brandt, A., Ely, J.D.E.T.W., Hallett, J.P., 2016. Direct Catalytic Conversion of Cellulose to 5-Hydroxymethylfurfural using Ionic Liquids. Inorganics 32, 1–15. doi: 10.3390/inorganics4040032.

Guerriero, G., Hausman, J.F., Strauss, J., Ertan, H., Siddiqui, K.S., 2016. Lignocellulosic Biomass: Biosynthesis, Degradation, and Industrial Utilization. Engineering In Life Sciences 16, 1–16. doi: 10.1002/elsc.201400196.

Hattori, H., and Onno, Y., 2015. Solid Acid Catalysis: From Fundamentals to Application. Pan Stanford Publishing Pte. Ltd., Singapura.

Huang, Y.B., and Fu, Y., 2013. Hydrolysis of Cellulose to Glucose by Solid Acid Catalysts. Green Chemistry 15, 1095–1111. doi: 10.1039/c3gc40136g.

Jae, J., Tompsett, G.A., Foster, A.J., Hammond, K.D., Auerbach, S.M., Lobo, R.F., and Huber, G.W., 2011. Investigation into The Shape Selectivity of Zeolite Catalysts for Biomass Conversion. Journal of Catalysis 279, 257–268. doi:10.1016/j.jcat.2011.01.01.

Li, H., Saravanamurugan, S., Yang, S., and Riisager A., 2014. Direct Transformation of Carbohydrates to The Biofuel 5-Ethoxymethylfurfural by Solid Acid Catalysts. Green Chemistry 18, 1–8. doi: 10.1039/x0xx00000x.

Nikolla, E., Leshkov, Y.R., Moliner, M., and Davis, M.E., 2011. “One-Pot” Synthesis of 5-(Hydroxymethyl)furfural from Carbohydrates using Tin-Beta Zeolite. ACS Catalysis 1, 408–410. doi: 10.1021/cs2000544.

Ngapa, Y.D., Sugiarti, S., and Abidin, Z., 2016. Hydrothermal Transformation of Natural Zeolite from Ende-NTT and Its Application as Adsorbent of Cationic Dye. Indonesia Journal of Chemistry 16, 138–143. doi: 10.22146/ijc.1091.

Nurhadi, M., Trisunarya, W., Yahya, M.U., Setiadji, B., 2001. Characterization And Modification Of Natural Zeolite And Its Cracking Properties On Petroleum Fraction. Indonesia Journal of Chemistry 1, 7–10. ISSN: 9772460–157006.

Octaviani, S., Krisnandi, Y.K., Abdullah, I., Sihombing, R., 2013. The Effect of Alkaline Treatment to the Structure of ZSM5 Zeolites. MAKARA of Science Series 16, 155–162. doi: 10.7454/mss.v16i3.1476.

Pierella, L.B., Saux, C., Caglieri, S.C., Bertorello, H.R., and Bercoff, P.G., 2008. Catalytic Activity and Magnetic Properties of Co-ZSM-5 Zeolites Prepeared by Different Methods. Applied Catalysis A: General 347, 55–61. doi: 10.1016/j.apcata.2008.05.033.

Putten, R.J.V., Waal, J.C.V.D., Jong, E.D., Rasrendra, C.B., Heeres, H.J., and Vries, J.G.D., 2013. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews 113, 1499–1597. doi: 10.1021/cr300182k.

Qian, X., 2011. Mechanism and Energetics for Acid-Catalyzed β-D-Glucose Conversion to 5-Hydroxymethylfurfural. Journal of Physical Chemistry A 115, 11740–11748. doi: 10.1021/jp2041982.

Roman-Leshkov, Y., Moliner, M., Labinnger, J.A., and Davis, M.E., 2010. Mechanism of Glucose Isomerization using A Solid Lewis Acid Catalyst in Water. Communications 49, 8954–8957. doi: 10.1002/anie.201004689.

Rosatella, A.A., Simeonov, S.P., Frade, R.F.M., and Afonso, A.M., 2011. 5-Hydroxymethylfurfural (HMF) as a Building Block Platform: Biological Properties, Synthesis and Synthetic Applications. Green Chemistry 13, 754–793. doi: 10.1039/c0gc00401d.

Salam, O.E.A., Reiad, N.A., Elshafei, M.M., 2011. A Study of The Removal Characteristics of Heavy Metals from Wastewaters by Low-Cost Adsorbents. Journal of Advanced Research 2, 297–303. doi:10.1016/j.jare.2011.01.008.

Silaghi, M.C., Chizallet, C., Sauer, J., and Raybaud, P., 2016. Dealumination Mechanisms of Zeolites and Extra-Framework Aluminum Confinement. Journal of Catalysis 339, 242–255. doi: 10.1016/j.jcat.2016.04.021.

Tong, X., Ma, Y., and Li, Y., 2010. Biomass into Chemicals: Conversion of Sugars to Furan Derivatives by Catalytic Processess. Applied Catalysis A: General 385, 1–13. doi: 10.1016/j.apcata.2010.06.049.

Trisunaryanti, W., 2016. Material Katalis dan Karakternya. Gadjah Mada University Press, Yogyakarta.

Uddin, M.K., 2016. A Review on The Adsorption of Heavy Metals by Clay Minerals, with Special Focus on The Past Decade. Chemical Engineering Journal 308, 438–462. doi: 10.1016/j.cej.2016.09.029.

Villa, A., Schiavoni, M., Fulvio, P.F., Mahurin, S.M., Dai, S., Mayes, R.T., Veith, G.M., and Prati, L., 2013. Phosphorylated Mesoporous Carbon as Effective Catalyst for The Selective Fructose Dehydration to HMF. Journal of Energy Chemistry 22, 305–311. doi: 10.1016/S2095-4956(13)60037-6.

Wang, X., Liang, X., Li, J., Li, Q., 2019. Catalytic Hydrogenolysis of Biomass-Derived 5-hydroxymethylfurfural to Biofuel 2,5-dimethylfuran. Applied Catalysis A: General 576, 85–95. doi: 10.1016/j.apcata.2019.03.005.

Warner, T.E., Klokker, M.G., and Nielsen, U.G., 2017. Synthesis and Characterization of Zeolit Na−Y and Its Conversion to The Solid Acid Zeolite H−Y. Journal of Chemical Education 94, 781–785. doi: 10.1021/acs.jchemed.6b00718.

Yu, I.K.M., and Tsang, D.C.W., 2017. Conversion of Biomass to Hydroxymethylfurfural: A Review of Catalytic System and Underlying Mechanism. Biosource Technology 238, 716–732. doi: 10.1016/j.biortech.2017.04.026.

Zhou, C., Zhao, J., and Yagoub, A.E.G.A., Ma, H., Yu, X., Hu, J., Bao, X., and Liu, S., 2016. Conversion of Glucose into 5-hydroxymethylfurfural in Different Solvents and Catalysts: Reaction Kinetics and Mechanism. Egyptian Journal of Petroleum 26, 477–487. doi: 10.1016/j.ejpe.2016.07.005.

Refbacks

  • There are currently no refbacks.