Analisis Transisi Fasa dan Sifat Dielektrik Pada Li2CoSiO4 yang Dipreparasi dari Silika Sekam Padi dan Produk Daur Ulang Katoda Baterai Ion Litium Bekas

Agus Riyanto, Simon Sembiring, Megawati Megawati, Ni’matil Mabarroh, Junaidi Junaidi, Ediman Ginting


Studi ini mendeskripsikan analisis transisi fasa dan sifat dielektrik pada bahan litium kobalt silikat (Li2CoSiO4) yang dipreparasi dari silika sekam padi dan produk daur ulang katoda baterai ion litium bekas dengan perbandingan massa 1:1. Transisi fasa pada sampel Li2CoSiO4 dipelajari menggunakan teknik termogravimetry/differential thermal analysis (TG/DTA). Sedangkan, nilai konstanta dielektrik pada sampel yang telah disinter pada suhu 600 – 900 oC dikarakterisasi menggunakan inductance, capacitance, dan resistance (LCR) meter. Hasilnya, pada rentang suhu 410 – 850 oC terjadi transisi polimorfik fasa  menjadi fasa . Suhu 850 oC juga merupakan titik transisi dimana fasa  berubah menjadi fasa . Transisi fasa yang terjadi pada sampel  Li2CoSiO4 diikuti dengan peningkatan nilai konstanta dielektrik dalam rentang frekuensi 450 – 100.000 Hz.

Analysis of Phase Transition and Dielectric Properties of Li2CoSiO4 Prepared from Rice Husk Silica and The Recycling Product of Used Lithium Ion Batteries Cathode. This study describes the analysis of the phase transition and dielectric properties of lithium cobalt silicate (Li2CoSiO4) prepared from rice husk silica and the recycling product of used lithium ion batteries cathode with mass ratio of 1:1. Phase transition in Li2CoSiO4 sample was studied using thermogravimetry/differential thermal analysis (TG/DTA) techniques. Meanwhile, the dielectric constant value in the samples sintered at temperature of 600 – 900 oC were characterized using inductance, capacitance, and resistance (LCR) meter. As a result, a polymorphic transition from  phase to  phase was occured in the temperature range of 410 ­– 850 oC. Temperature of 850 oC is a transition point from  phase to  phase. The phase transitions occured in the Li2CoSiO4 was followed by the increasing of the dielectric constant in the frequency range of 450 – 100,000 Hz.


cathode; Li2CoSiO4; silica; phase transition; dielectric constant

Full Text:



Bakar, R. A., Yahya, R., and Gan, S. N. 2016. Production of High Purity Amorphous Silica from Rice Husk. Procedia Chemistry 19, 189–195.

Chen, J. 2013. Recent Progress in Advanced Materials for Lithium Ion Batteries. Materials 6, 156–183.

Farahani, B. V., Behbahani, G. R., and Javadi, N. 2016. Functionalized Multi Walled Carbon Nanotubes as a Carrier for Doxorubicin: Drug Adsorption Study and Statistical Optimization of Drug Loading by Factorial Design Methodology. Journal of Brailian Chemical Society 27(4), 694–705.

Fernandes, I. J., Calheiro, D., Sánchezb, F. A. L., Camachob, A. L. D., Rocha, T. L. A. de C. R., Moraes, C. A. M., and Sousaa, V. C. de. 2017. Characterization of Silica Produced from Rice Husk Ash : Comparison of Purification and Processing Methods. Materials Research 20(2), 512–518.

Fröhlich, K., Legotin, E., Bärhold, F., and Trifonova, A. 2017. New large-scale production route for synthesis of lithium nickel manganese cobalt oxide. Journal Solid State Electrochem 21, 3403–3410.

Ghorbani, F., Sanati, A. M., and Maleki, M. 2015. Production of Silica Nanoparticles from Rice Husk as Agricultural Waste by Environmental Friendly Technique. Environmental Studies of Persian Gulf 2(1), 56–65.

Gong, Z., and Yang, Y. 2011. Environmental Science Recent advances in the research of polyanion-type cathode materials for. Energy and Enviromental Science 4, 3223–3242.

Hussain, S., Jha, P., Chouksey, A., Raman, R., Islam, S. S., Islam, T., Choudhary, P.K., Harsh. 2011. Spectroscopic Investigation of Modified Single Wall Carbon Nanotube (SWCNT). Journal of Modern Physics 2, 538–543.

Islam, M. S., Dominko, R., Masquelier, C., Sirisopanaporn, C., Armstrong, A. R., and Bruce, P. G. 2011. Silicate cathodes for lithium batteries : alternatives to phosphates? Journal of Materials Chemistry 21, 9811–9818.

Jayaprakash, N., Kalaiselvi, N., and Periasamy, P. 2008. A preliminary investigation into the new class of lithium intercalating LiNiSiO4. Nanotechnology 19, 1–5.

Julien, C., and Massor, M. 2002. Spectroscopic studies of the local structure in positive electrodes for lithium batteries. Physical Chemistry Chemical Physics 4, 4226–4235.

Kalapathy, U., Proctor, A., and Shultz, J. 2000. A simple method for production of pure silica from rice hull ash. Bioresource Technology 73(3), 257–262.

Kandalkar, S. G., Gunjakar, J. L., and Lokhande, C. D. 2008. Applied Surface Science Preparation of cobalt oxide thin films and its use in supercapacitor application. Applied Surface Science 254, 5540–5544.

Khalilzadeh, N., Saion, E. Bin, Mirabolghasemi, H., Shaari, A. H. Bin, Hashim, M. Bin, Ahmad, M. B. H., Ali, N.M., and Dehzangi, A. 2016. Single step thermal treatment synthesis and characterization of lithium tetraborate nanophosphor. Journal of Materials Research and Technology 5(1), 37–44.

Nakayama, N., Itoyama, T., Suemoto, K., Fujiwara, K., Nakatsuka, A., Isobe, M., and Ueda, Y. 2011. Structural Phase Transition and Microstructures of Li2CoSiO4 36(3), 437–440.

Nayl, A. A., Elkhashab, R. A., Badawy, S. M., and El-Khateeb, M. A. 2014. Acid leaching of mixed spent Li-ion batteries. Arabian Journal of Chemistry 10, S3632–S3639.

Riyanto, A., Sembiring, S., and Junaidi. 2017. Karakteristik Fisis Aluminosilikat Geopolimer Berbasis Silika Sekam Padi untuk Aplikasi` Fast Ionic Conductor. Reaktor 17(2), 96–103.

Rodríguez, M. G., Kharissova, O. V, and Ortiz-Méndez, U. 2004. Formation of Boron Carbide Nanofibers and Nanobelts From Heated By Microwave. Rev.Adv.Mater.Sci 7, 55–60.

Saad, F. A., Abou-Sekkina, M. M., Khedr, A. M., and El-Metwaly, F. G. 2014. Synthesis, Stability and DC-electrical Conductivity of Vanadium and Chromium Dual Doped LiMn2O4 Spinals as Cathode Material for Use in Lithium Rechargeable Batteries. International Journal of Electochemical Science 9, 3904 – 3916.

Sanaeishoar, H., Sabbaghan, M., and Mohave, F. (2015). Microporous and Mesoporous Materials Synthesis and characterization of micro-mesoporous MCM-41 using various ionic liquids as co-templates. Microporous and Mesoporous Materials, 217, 219–224.

Sembiring, S. 2011. Synthesis and characterization of rice husk silica based borosilicate (B2SiO5) ceramics by sol-gel routes. Indonesian Journal of Chemistry 11(1), 85–89.

Sembiring, S., and Simanjuntak, W. 2012. X-ray Diffraction Phase Analyses of Mullite Derived from Rice Husk Silica X-ray Diffraction Phase Analyses of Mullite Derived from Rice Husk Silica Abstrak. Makara Journal of Science 16(2), 77–82.

Sembiring, S., Simanjuntak, W., Situmeang, R., and Riyanto, A. 2016. Preparation of refractory cordierite using amorphous rice husk silica for thermal insulation purposes. Ceramics International, 42(7), 8431–8437.

Sembiring, S., Simanjuntak, W., Situmeang, R., Riyanto, A., and Karo-Karo, P. 2017a. Effect of alumina addition on the phase transformation and crystallisation properties of refractory cordierite prepared from amorphous rice husk silica. Journal of Asian Ceramic Societies 5(2), 186–192.

Sembiring, S., Riyanto, A., Simanjuntak, W., and Situmeang, R. 2017b. Effect of MgO-SiO2 ratio on the forsterite (Mg2SiO4) precursors characteristics derived from amorphous rice husk silica. Oriental Journal of Chemistry 33(4), 1828–1836.

Sembiring, S., Simanjuntak, W., Situmeang, R., Riyanto, A., and Junaidi. 2018. Structural and Physical Properties of Refractory Cordierite Precursors Prepared from Rice Husk. Ceramics - Silikaty, 62(2), 163–172.

Setiabudi, A., Hardian, R., and Muzakir., 2012. Karakterisasi Material: Prinsip dan Aplikasinya dalam Penelitian Kimia. UPI Press.

Shu, J., Cheng, S., Xia, H., Zhang, L., Peng, J., Li, C., and Zhang, S. 2017. Copper loaded on activated carbon as an e ffi cient adsorbent for removal of methylene blue. RSC Advances 7, 14395–14405.

Shu-guang, Z. H. U., Wen-zhi, H. E., Guang-ming, L. I., Xu, Z., Xiao-jun, Z., and Ju-wen, H. 2012. Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation. Transactions of Nonferrous Metals Society of China 22, 2274–2281.

Shun-qing, W. U., Zi-zhong, Z. H. U., Yong, Y., and Zhu-feng, H. O. U. 2009. Effects of Na-substitution on structural and electronic properties of Li2CoSiO4 cathode material. Transactions of Nonferrous Metals Society of China 19(1), 182–186.

Simanjuntak, W., Sembiring, S., and Sebayang, K. 2012. Effect of Pyrolysis Suhues on Composition and Electrical Conductivity of Carbosil Prepared from Rice Husk. Indonesian Journal of Chemistry 12(2), 119–125.

Sousa, A. M. de, Visconte, L., Mansur, C., and Furtado, C. 2009. Silica sol obtained from rice husk ash. Chemistry and Chemical Technology 3(4), 321–326.

Świętosławski, M., Molenda, M., Natkański, P., Kuśtrowsk, P., and Dziembaj, R. 2014. Sol–gel synthesis, structural and electrical properties of Li2CoSiO4 cathode material. Functional Materials Letters 7(6), 1 – 4.

Trivedi, M. K., Branton, A., Trivedi, D., Shettigar, H., Bairwa, K., and Jana, S. 2015. Natural Products Chemistry and Research Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characterization of Biofield Treated Salicylic Acid and Sparfloxacin. Natural Products Chemistry and Research 3(5), 1–6.

Wang, S., Wang, D. K., Smart, S., and Diniz, J. C. 2015. Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate. Scientific Reports, 1–11.

Xu, B., Qian, D., Wang, Z., and Meng, Y. S. 2012. Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering R 73, 51–65.

Yamaguchi, B. Y. H., Akatsuka, K., Setoguchi, M., and Takaki, Y. 1979. Structure of Cobalt Dilithium Silicate fln-Li2CoSiO4. Acta Crystallographica B35, 2680–2682.

Yuvakkumar, R., Elango, V., Rajendran, V., and Kannan, N. 2014. High-purity nano silica powder from rice husk using a simple chemical method. Journal of Experimental Nanoscience 9(3), 272–281.


  • There are currently no refbacks.