Electronic Structure of Vanadium-Doped TiO2 of Both Anatase and Rutile Based on Density Functional Theory (DFT) Approach

Hari Sutrisno

Abstract

Study of the theoretical  approah to calculate the band structure and density of states (DOS) of vanadium-doped TiO2 of both anatase and rutile have been done. The first-principle calculations were done using supercell (2x1x1) method. The first-principle calculation of V-doped TiO2 of both anatase and rutile were analyzed by density-functional theory (DFT) with generalized gradient approximation from Perdew-Burke-Ernzerhof (GGA+PBE), Perdew-Wang’s 1991 (GGA+PW91) and local density approximation (LDA) for exchange-correlation functionals. The calculation of electronic structures show that the V-doped TiO2-anatase with high concentration (7.93%) in 24 atoms are direct- and indirect-gap semiconductor, whereas the V-doped TiO2-rutile with high concentration (15.79%) in 12 atoms is direct-gap semiconductor. The V-doped TiO2 of both anatase and rutile produce the intermediate bands in the upper states. Ihe V-doped anatase produces intermediate band, which is 2.05, 2.04, 2.06 eV above the valence band for GGA+PBE, GGA+PW91 and LDA, respectively. Meanwhile the V-doped rutile producesintermediate band, which is 1.76, 1.82, 1.74 eV above the valence band for GGA+PBE, GGA+PW91 and LDA, respectively.

Keywords

anatase; band-gap DFT; electronic structure; rutile

Full Text:

PDF

References

Al-Hartomy, O.A., 2014. Synthesis, Characterization, Photocatalytic and Photo-Voltaic Performance of Ag-Doped TiO2 Load on The Pt-Carbon Spheres. Material Science in Semiconductor Processing 27, 71-78.

Chang, S. M., and Liu, W. S., 2014, The Roles of Surface-Doped Metal Ions (V, Mn, Fe, Cu, Ce, and W) in the Interfacial Behavior of TiO2 Photocatalysts. Applied Catalysis B: Environmental 156-157, 466-475.

Dong, F., Zhao, W., and Wu, Z., 2008. Characterization and Photocatalytic Activities of C, N and S Co-Doped TiO2 with 1D Nano-Structure Prepared by The Nano-Confinement Effect. Nanotechnology 19, 365607-365617.

Galkina, O. L., Sycheva, A., Blagodatskiy, А., Kaptay, G., Katanaev, V. L., Seisenbaeva, G. A., Kessler, V. G., and Agafonov. A.V., 2014, The Sol-Gel Synthesis of Cotton/TiO2 Composites and Their Antibacterial Properties. Surface and Coatings Technology 253, 171-179.

Grant F. A., 1959, Properties of Rutile (Titanium Dioxide). Review Modern Physics 31, 646-650.

Grätzel, M., 2004. Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry 164, 3-14.

Grätzel, M., 2005. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry 44, 6841-6851.

Hoyer, P and Weller, H., 1994. Particle Size and pH Effects on The Sensitization of Nanoporous Titanium Dioxide Electrodes by Q-Sized Silver Sulfide. Chemistry Physics Letters 224(1-2), 75-80.

Hu, C., Hu, X., Wang, L., Qu, H., and Wang, A., 2006. Visible-Light Induced Photocatalytic Degradation of Azodys in Aqueous AgI/TiO2 Dispersion. Environmental Science and Technology 40, 7903-7907.

Huang, Z., Maness, P. C., Blake, D. M., Wolfrum, E. J., Smolinski, S. and Jacoby, W. A., 2000. Bactericidal Mode of Titanium Dioxide Photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 130, 163-170.

Islam, M. M., Bredow, T. and Gerson. A. 2015. Electronic Properties of Vanadium-Doped TiO2. Chemical Physics and Physical Chemistry 12, 3467-3473.

Kohn, W., and Sham, L. J., 1965. Self Consistent Equations Including Exchange and Correlation Effects. Physical Review B 140, A1133- A1137.

Kokorin, I., Sukhanov, A., Gromov, O. I., Arakelyan, V. M., Aroutiounian, V. M., and Voronkova, V. K. 2016. EPR Study of TiO2 (Rutile) Doped with Vanadium. Applied Magnetic Resonance 47(5), 479-485.

Liu, B., Wang, X., Cai, G., Wen, L., Song, Y., and Zhao, X., 2009. Low Temperature Fabrication of V-Doped TiO2 Nanoparticles, Structure and Photo-Catalytic Studies. Journal of Hazardous Materials 169, 1112-1118.

Ma, J., Guo, X., Zhang, Y., and Ge, H., 2014. Catalytic Performance of TiO2@Ag Composites Prepared by Modified Photo-Deposition Method. Chemical Engineering Journal 258, 247-253.

Maness, P. C., Smolinski, S., Blake, D. M., Huang, Z., Wolfrum, E. J., and Jacoby, W. A., 1999. Bactericidal Activity of Photocatalytic TiO2 Reaction, Toward and Undersding of Its Killing Mechanism. Applied and Environmental Microbiology 65(9), 4094-4098.

Mo, S. D. and Ching, W. Y., 1995. Electronic and Optical Properties of Three Phases of Titanium Dioxide, Rutile, Anatase, and Brookite. Physical Review B 51, 13023-13032.

Muctuma, B. K., Shao, G. N., Kim, W. D., and Kim, H. T., 2015. Sol-Gel Synthesis of Mesoporous Anatase–Brookite and Anatase-Brookite-Rutile TiO2 Nanoparticles and Their photocatalytic Properties. Journal of Colloid Interface Science 442, 1-7.

Peng, L. P., Xu, L., and Xia, Z. C. 2014, Study The High Photocatalytic Activity of Vanadium and Phosphorus Co-Doped TiO2 from Experiment and DFT Calculations. Computational Materials Science 83, 309-317.

Perdew, J. P., Burke, K., and Ernzerhof, M., 1996. Generalized Gradient Approximation Made Simple. Physical Review Letters 77(18), 3865-3868.

Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson M. R., and Fiolhais, C., 1992. Atoms, Molecules, Solids, and Surfaces, Applications of The Generalized Gradient Approximation for Exchange and Correlation. Physical Review B 46 , 6671-6678.

Prasai, B., Cai, B., Underwood, M. K., Lewis, J. P., and Drabold, D. A., 2012. Properties of Amorphous and Crystalline Titanium Dioxide from First Principles. Journal of Materials Science 47(21), 7515-7521. SCM, 2014. ADF-Band version 2014.10, Vrije Universiteit, Amsterdam : The Netherlands.

Sutrisno, H., and Sunarto. 2014. Perhitungan Awal Struktur Pita dan Density of State (DOS) Fasa Anatas dan Rutile dengan Model Struktur Kristal Eksperimen. Prosiding Seminar Nasional Dies Natalis ke-50 Universitas Negeri Yogyakarta.

Swope, R. J., Smyth, J. R., and Larson, A. C., 1995. H in Rutile-Type Compounds, I. Single-Crystal Neutron and X-Ray Diffraction Study of H in Rutile. American Mineralogist 80, 448-453.

Tan, B., and Wu, Y., 2006. Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites. Journal of Physical Chemistry B 110, 15932-15938.

Tang, H., Prasad K., Sanjinès R., Schmidt P. E., and Lévy F., 1994. Electrical and Optical Properties of TiO2 Anatase Thin Films. Journal of Applied Physics 75, 2042- 2047.

Thuy, N. M., Van, D. Q., and Hai, L. T. H., 2012. The Visible Light Activity of The TiO2 and TiO2,V4+ Photocatalyst. Nanomaterials and Nanotechnology 2, 1-8.

Tian, B., Li, C., and Zhang, J., 2012. One Step Preparation, Characterization and Visible-Light Photo-Catalytic Activity of Cr-Doped TiO2 with Anatase and Rutile Bicrystalline Phases. Chemical Engineering Journal 191, 402-409.

Wang, H., Niu, J., Long, X., and He, Y., 2008. Sonophotocatalitic Degradation of Methyl Orange by Nanosized Ag/TiO2 Particles in Aqueous Solutions. Ultrasonic Sonochemistry 15, 386-392.

Wang, Y., Zhang, R., Li, J., Li., L., and Lin, S. 2014. First-Principles Study on Transition Metal-Doped Anatase TiO2. Nanoscale Research Letter 9, 46-54.

Weirich, T. E., Winterer, M., Seifried, S., Hahn, H. and Fuess, H., 2000. Rietveld Analysis of Electron Powder Diffraction Data from Nanocrystalline Anatase TiO2. Ultramicroscopy 81(3-4), 263-270.

Yang, J., Cui, S., Qiao, J. Q., and Lian, H. Z., 2014. The Photocatalytic Dehalogenation of Chlorophenols and Bromophenols by Cobalt Doped Nano TiO2. Journal of Molecular Catalysis A: Chemical 395, 42-51.

Yang, X., Cao, C., Hohn, K., Erickson, L., Maghirang, R., Hamal, D., and Klabunde, K., 2007. Highly Visible Light Active C- and V-Doped TiO2 for Degradation of Acetaldehyde. Journal Catalysis 252, 296-302.

Zhang, D. R., Liu, H. N., Han, S. Y., and Piao, W. X., 2013. Synthesis of Sc- and V-Doped TiO2 Nano-Particles and Photodegradation of Rhodamine-B. Journal of Industrial an Engineering Chemistry 19, 1838-1844.

Zhang, J., Wu, B., Huang, L., Liu, P., Wang, X., Lu, Z., Xu, G., Zhang, E., Wang, H., Kong, Z., Xi, J., and Ji, Z., 2016. Anatase Nano-TiO2 with Exposed Curved Surface for High Photocatalytic Activity. Journal of Alloys and Compound 661, 441-447.

Zhao, K., Wu, Z., Tang, R., and Jiang, Y., 2013. Preparation of Highly Visible-Light Photocatalytic Active N-Doped TiO2 Microcuboids. Journal of Korean Chemical Society 57(4), 489-492.

Zhao, Y., Qiu, X., and Burda, C., 2008. The Effects of Sintering on The Photocatalytic Activity of N-Doped TiO2 Nanoparticles. Chemistry of Material 20, 2629-2636.

Refbacks

  • There are currently no refbacks.