Solvent and Heating Duration Effects on the Formation of Local Pyrophyllite PEG-4000 Hybrid Materials

Siti Mutrofin, Wanda Ainun Shabiya, Hanisah Kamilah

Abstract

Hybrid materials are new materials formed by combining two or more components to produce enhanced and distinct properties from the individual constituents. One example is the hybrid system of  pyrophyllite and PEG 4000. This hybrid has not been reported and has potential for various applications. Local (Sumbermanjing) pyrophyllite-PEG 4000 hybrid was synthesized using casting and sol-gel methods with variations in solvent type (demineralized water, methanol, acetone) and heating time (1, 1.5, 2 hours) at a temperature of 100 – 105 ℃. Acetone produced the highest yield (34.89%) due to superior solvent-material interactions, while two-hour heating achieved maximum yield (36.20%) through enhanced intermolecular bonding. Statistical analysis confirmed significant differences in solvent variations, while heating time showed no significant effect. FTIR characterization revealed specific functional groups O–H stretching (Al-–OH linkage) at 3673.92 cm⁻¹, O–H stretching (3487.09 cm⁻¹), C–O stretching (1103.89 cm⁻¹), and Al–-OH bending vibration at 841.46 cm⁻¹, thus confirming successful hybrid formation. Melting point analysis showed 128.13 °C (1 hour heating hour) and 124.83 °C (2 hours heating time), indicating new material formation. 

Keywords

clay-polymer hybrid; FTIR; polyethylene glycol 4000 local (Sumbermanjing) pyrophyllite; sol-gel method

Full Text:

PDF

References

Abdul, M., Najeeb, M., Mahdi, Shatha Hashim, Sattar, M.A., Mahdi, Shatha H, and Fadil, N.Q., 2020. The Effect of Heat Treatment on the Degree of Crystallinity and Grain Size for (N6, PS) Polymers. Journal of Xi’an University of Architecture & Technology.

Adeleke, A.A., Oki, M., Anyim, I.K., Ikubanni, P.P., Adediran, A.A., Balogun, A.A., Orhadahwe, T.A., Omoniyi, P.O., Olabisi, A.S., and Akinlabi, E.T., 2022. Recent Development in Casting Technology: A Pragmatic Review. Revue des composites et des matériaux avancés, 32, 91–102. https://doi.org/10.18280/rcma.320206.

Ali, M.A., Ahmed, H.A.M., Ahmed, H.M., and Hefni, M., 2021. Pyrophyllite: An Economic Mineral for Different Industrial Applications. Applied Sciences, 11, 11357. https://doi.org/10.3390/app112311357.

Danks, A.E., Hall, S.R., and Schnepp, Z., 2016. The Evolution of ‘Sol–Gel’ Chemistry as a Technique for Materials Synthesis. Materials Horizons, 3, 91–112. https://doi.org/10.1039/C5MH00260E.

Denry, I., Holloway, J.A., and Gupta, P.K., 2012. Effect of Crystallization Heat Treatment on the Microstructure of Niobium‐doped Fluorapatite Glass‐ceramics. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B, 1198–1205. https://doi.org/10.1002/jbm.b.32684.

Fadly, T.A., Fauziyah, N.A., Rosyidy, A., Mashuri, and Pratapa, S., 2017. Degradation Activation Energy Determination of PEG 4000-Quartz Composites Using Dynamic Mechanical Analyzer (DMA) Measurements. p. 030033. https://doi.org/10.1063/1.4968286.

Faradilla, R.F., Lee, G., Sivakumar, P., Stenzel, M., and Arcot, J., 2019. Effect of Polyethylene Glycol (PEG) Molecular Weight and Nanofillers on the Properties of Banana Pseudostem Nanocellulose Films. Carbohydrate Polymers, 205, 330–339. https://doi.org/10.1016/j.carbpol.2018.10.049.

Gaballa, sherif, Naguib, Y., Mady, F., and Khaled, K., 2023. Polyethylene Glycol: Properties, Applications, and Challenges. Journal of advanced Biomedical and Pharmaceutical Sciences, 7, 26–36. https://doi.org/10.21608/jabps.2023.241685.1205.

Balkanloo, P.G., Marjani, A.P., Zanbili, F., and Mahmoudian, M., 2022. Clay Mineral/Polymer Composite: Characteristics, Synthesis, and Application in Li-Ion Batteries: A Review. Applied Clay Science, 228, 106632. https://doi.org/10.1016/j.clay.2022.106632.

Hernández, K.A.H., 2016. Polymer-Clay Nanocomposites and Composites: Structures, Characteristics, and Their Applications in the Removal of Organic Compounds of Environmental Interest. Medicinal Chemistry, 6, 201–210. https://doi.org/10.4172/2161-0444.1000347.

Leszczyńska, A., Njuguna, J., Pielichowski, K., and Banerjee, J.R., 2007. Polymer/Montmorillonite Nanocomposites with Improved Thermal Properties. Thermochimica Acta, 453, 75–96. https://doi.org/10.1016/j.tca.2006.11.002.

Li, T., Wu, J., Wang, X., and Huang, H., 2021. Particle Size Effect and Temperature Effect on the Pore Structure of Low-Rank Coal. ACS Omega, 6, 5865–5877. https://doi.org/10.1021/acsomega.0c06280.

Mahmood, W.A.K., Azarian, M.H., Wan Fathilah, W.F. bt, and Kwok, E., 2017. Nanoencapsulation of Montmorillonite Clay within Poly(Ethylene Glycol) Nanobeads by Electrospraying. Journal of Applied Polymer Science, 134, 45048. https://doi.org/10.1002/app.45048.

Martadiastuti, V., Winarno, T., Ali, R.K., and Purba, E.C., 2024. Characteristics of Pyrophyllite and Hydrothermal Alteration at Argotirto Area, Malang Regency, East Java, Indonesia. IOP Conference Series: Earth and Environmental Science, 1378, 012027. https://doi.org/10.1088/1755-1315/1378/1/012027.

Money, N.P., 1989. Osmotic Pressure of Aqueous Polyethylene Glycols. Plant Physiology, 91, 766–769. https://doi.org/10.1104/pp.91.2.766.

Mutrofin, S., Setyaningsih, T., Wati, F.N., and Purwonugroho, D., 2018. Physical-Chemistry of Nawangan’s Phyropyllite and Its Prospective as Environmental Friendly Geopolymer Materials. IOP Conference Series: Materials Science and Engineering, 285, 012026. https://doi.org/10.1088/1757-899X/285/1/012026.

Özdemir, C., and Güner, A., 2007. Solubility Profiles of Poly(Ethylene Glycol)/Solvent Systems, I: Qualitative Comparison of Solubility Parameter Approaches. European Polymer Journal, 43, 3068–3093. https://doi.org/10.1016/j.eurpolymj.2007.02.022.

Qiao, Z., Wang, Z., Zhang, C., Yuan, S., Zhu, Y., Wang, J., and Wang, S., 2013. PVAm-PIP/PS Composite Membrane with High Performance for CO2/N2 Separation. AIChE Journal, 59, 215–228. https://doi.org/10.1002/aic.13781.

Qin, Y., Peng, T., Sun, H., Zeng, L., Li, Y., and Zhou, C., 2021. Effect of Montmorillonite Layer Charge on the Thermal Stability of Bentonite. Clays and Clay Minerals, 69, 328–338. https://doi.org/10.1007/s42860-021-00117-w.

Riesco-Avila, J.M., Vera-Rozo, J.R., Rodríguez-Valderrama, D.A., Pardo-Cely, D.M., and Ramón-Valencia, B., 2022. Effects of Heating Rate and Temperature on the Yield of Thermal Pyrolysis of a Random Waste Plastic Mixture. Sustainability, 14, 9026. https://doi.org/10.3390/su14159026.

Wieczerzak, K., Sharma, A., Hain, C., and Michler, J., 2023. Crystalline or Amorphous? A Critical Evaluation of Phenomenological Phase Selection Rules. Materials & Design, 230, 111994. https://doi.org/10.1016/j.matdes.2023.111994.

Winarno, T., Martadiastuti, V., and Puspitasari, E.I., 2024. Analysis of Pyrophyllite Quality as a Potential Industrial Raw Material in Argotirto Area, Sumbermanjing Wetan District, Malang Regency, East Java, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 9, 259–265. https://doi.org/10.25299/jgeet.2024.9.3.10153.

Zhao, Q., Morawietz, T., Gazdzicki, P., and Friedrich, K.A., 2024. Effect of High-Boiling Point Solvents on Inkjet Printing of Catalyst Layers for Proton Exchange Membrane Fuel Cells. Electrochimica Acta, 508, 145273. https://doi.org/10.1016/j.electacta.2024.145273.

Refbacks

  • There are currently no refbacks.