Functional Bioplastic Based on Chitosan/Sago Starch (Metroxylon sago) with the Addition of Black Fruit (Haplolobus sp.) Leaves Ethanolic Extract

Agnes Dyah Novitasari Lestari, Muchammad Fauzan Kuri Pasai, Evelina Somar, Dewi Eviane, Gabriella Shine De Kweldju

Abstract

Bioplastic as an antioxidant and antibacterial packaging has been synthesized from chitosan and sago starch with Black fruit leaves ethanolic extract. The bioplastic synthesis was done by mixing a solution of chitosan, sago starch, glycerol, and ethanolic extract of Black fruit leaves, pouring it into a petri dish, and then drying it in an oven. The bioplastic produced was then characterized using Fourier transform infrared spectroscopy (FTIR). The results show that increasing the weight ratio of chitosan/sago starch increased tensile strength, decreased elongation, decreased thickness, and increased biodegradation time. The addition of ethanolic extract of black fruit leaves reduces tensile strength at a chitosan/starch weight ratio of 4:1, increases tensile strength at a chitosan/starch weight ratio of 1:1, tends to minimize elongation at both Chitosan/starch ratios, tends to increase thickness at a chitosan/starch weight ratio of 4:1, decreases thickness at a Chitosan/starch weight ratio of 1:1, and increases biodegradation time. The best bioplastic formulation in this study found in  CS11E1 (weight ratio of Chitosan/starch 1:1, extract concentration 1%), with a tensile strength of 4.71 MPa, elongation of 29.33%, thickness of 0.07 mm, and biodegradation time of 6 days.

Keywords

bioplastic; chitosan; Haplolobus sp.; glycerol; sago starch

Full Text:

PDF

References

Abang, S., Wong, F., Sarbatly, R., Sariau, J., Baini, R., and Besar, N.A., 2023. Bioplastic Classifications and Innovations in Antibacterial, Antifungal, and Antioxidant Applications. Journal of Bioresources and Bioproducts, 8, 361–387. https://doi.org/10.1016/j.jobab.2023.06.005.

Adawiyah, D.R., Sasaki, T., and Kohyama, K., 2013. Characterization of Arenga Starch in Comparison with Sago Starch. Carbohydrate Polymers, 92, 2306–2313. https://doi.org/10.1016/j.carbpol.2012.12.014.

Aliabadi, M., Chee, B.S., Matos, M., Cortese, Y.J., Nugent, M.J.D., de Lima, T.A.M., Magalhães, W.L.E., de Lima, G.G., and Firouzabadi, M.D., 2021. Microfibrillated Cellulose Films Containing Chitosan and Tannic Acid for Wound Healing Applications. Journal of Materials Science: Materials in Medicine, 32, 67. https://doi.org/10.1007/s10856-021-06536-4.

Alves, Z., Ferreira, N.M., Ferreira, P., and Nunes, C., 2022. Design of Heat Sealable Starch-Chitosan Bioplastics Reinforced with Reduced Graphene Oxide for Active Food Packaging. Carbohydrate Polymers, 291, 119517. https://doi.org/10.1016/j.carbpol.2022.119517.

Aronggear, A., Somar, E., Santoso, B.B., and Massora, M., 2022. Daya Hambat Ekstrak Aseton 70% Daun Buah Hitam (Haplolobus Sp.) Terhadap Bakteri S.aureus, S.typhi, E.coli, B.subtilis, in: Prosiding Seminar Nasional MIPA UNIPA. pp. 164–170. https://doi.org/10.30862/psnmu.v7i1.24.

Atiwesh, G., Mikhael, A., Parrish, C.C., Banoub, J., and Le, T.-A.T., 2021. Environmental Impact of Bioplastic Use: A Review. Heliyon, 7, e07918. https://doi.org/10.1016/j.heliyon.2021.e07918.

Ayulia, L., Djoefrie, M., and Arifien, Y., 2021. Vegetative Morphology and Starch Production Among Sago Plants (Metroxylon spp.) in Kepulauan Meranti District, Riau, Indonesia. Journal of Tropical Crop Science, 8, 33–40. https://doi.org/10.29244/jtcs.8.01.33-40.

Bonnenfant, C., Gontard, N., and Aouf, C., 2022. Extending Biopolyesters Circularity by Using Natural Stabilizers: A Review on the Potential of Polyphenols to Enhance Poly(Hydroxyalkanoates) Thermal Stability While Preserving Its Biodegradability. Polymer Testing, 110, 107561. https://doi.org/10.1016/j.polymertesting.2022.107561.

Brilianti, K.F., Ridlo, A., and Sedjati, S., 2023. Sifat Mekanik dan Ketebalan Bioplastik dari Kappaphycus alvarezii Menggunakan Variasi Konsentrasi Amilum dengan Pemlastis Gliserol. Journal of Marine Research, 12, 95–102. https://doi.org/10.14710/jmr.v12i1.34169.

Budiman, M.A., Uju, and Tarman, K., 2022. A Review on the Difference of Physical and Mechanical Properties of Bioplastic from Seaweed Hydrocolloids with Various Plasticizers. IOP Conference Series: Earth and Environmental Science, 967, 012012. https://doi.org/10.1088/1755-1315/967/1/012012.

Cunha, A.G., Fernandes, S.C.M., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., and Gandini, A., 2008. What Is the Real Value of Chitosan’s Surface Energy?. Biomacromolecules, 9, 610–614. https://doi.org/10.1021/bm701199g.

Dalal, S.R., El-Naggar, N.E.-A., and El Naeem, G.A., 2023. Biosynthesis of Sustainable Biodegradable Bioplastics Using Alginate Extracted from Padina Pavonica, Optimization and Characterization. Algal Research, 76, 103325. https://doi.org/10.1016/j.algal.2023.103325.

Duma, H., Morin, J.V., and Lestari, A.D.N., 2023. Pengaruh Penambahan Pemlastis Gliserol dan Minyak Buah Merah (Pandanus conoideus) Terhadap Kuat Tarik dan Elongasi Bioplastik Berbahan Pati Sagu (Metroxylon sago)-Kitosan. Jurnal Natural, 19, 94–101.

Fadhallah, E.G., Assa’diyah, I.N., Juwita, N., Tullaila, S., Yudistiro, M.K.K., Zuidar, A.S., and Dameswary, A.H., 2024. Sustainable Bioplastics Made from Cassava Peel Waste Starch and Carrageenan Formulations: Synthesis and Characterization. Molekul, 19, 36–45. https://doi.org/10.20884/1.jm.2024.19.1.8394.

Folino, A., Pangallo, D., and Calabrò, P.S., 2023. Assessing Bioplastics Biodegradability by Standard and Research Methods: Current Trends and Open Issues. Journal of Environmental Chemical Engineering, 11, 109424. https://doi.org/10.1016/j.jece.2023.109424.

Gabriel, A.A., Solikhah, A.F., and Rahmawati, A.Y., 2021. Tensile Strength and Elongation Testing for Starch-Based Bioplastics Using Melt Intercalation Method: A Review. Journal of Physics: Conference Series, 1858, 012028. https://doi.org/10.1088/1742-6596/1858/1/012028.

Isroi, Cifriadi, A., Panji, T., Wibowo, N.A., and Syamsu, K., 2017. Bioplastic Production from Cellulose of Oil Palm Empty Fruit Bunch. IOP Conference Series: Earth and Environmental Science, 65, 012011. https://doi.org/10.1088/1755-1315/65/1/012011.

Japanese Industrial Standard, 2019. General Rules of Plastic Films for Food Packaging. Japanese Standards Association, Tokyo, Japan.

Karua, C.S., and Sahoo, A., 2020. Synthesis and Characterization of Starch/Chitosan Composites. Materials Today: Proceedings, 33, 5179–5183. https://doi.org/10.1016/j.matpr.2020.02.878.

Kong, U., Mohammad Rawi, N.F., and Tay, G.S., 2023. The Potential Applications of Reinforced Bioplastics in Various Industries: A Review. Polymers, 15, 2399. https://doi.org/10.3390/polym15102399.

Koochakzaei, A., and Sabaghian, M., 2023. Tannin Characterization and Sourcing in Historical Leathers through FTIR Spectroscopy and PCA Analysis. Collagen and Leather, 5, 21. https://doi.org/10.1186/s42825-023-00128-4.

Kusumaningrum, M., Imani, N., Gemilang, S., Rahma, F., and Wulansarie, R., 2023. Synthesis and Physical Characterization of Bioplastics Based on Jicama Starch (Pachyrhizus erosus) – Chitosan. IOP Conference Series: Earth and Environmental Science, 1203, 012001. https://doi.org/10.1088/1755-1315/1203/1/012001.

Lestari, A.D.N., Mudasir, Siswanta, D., and Martien, R., 2018. Preliminary Study on Microprecipitation of β-Carotene in Starch/Chitosan/TPP (Tripolyphosphate) Matrices: Effects of Weight Ratio of Starch/Chitosan. p. 020045. https://doi.org/10.1063/1.5082450.

Lestari, A.D.N., Toja, Y.T., Ungirwalu, A., Ramlah, R., Somar, E., and Murtihapsari, M., 2024. Black Fruit Plant (Haplolobus monticola) Ethanolic Extract as a Good Source of Chemical Compound Content with The Potential as A Safe Antioxidant and Antibacterial Agent. al Kimiya, 11, 36–44. https://doi.org/10.15575/ak.v11i1.34417.

Listyarini, R.V., Susilawati, P.R., Nukung, E.N., and Yua, M.A.T., 2020. Bioplastic from Pectin of Dragon Fruit (Hylocereus polyrhizus) Peel. Jurnal Kimia Sains dan Aplikasi, 23, 203–208. https://doi.org/10.14710/jksa.23.6.203-208.

Ma, H., Qin, W., Guo, B., and Li, P., 2022. Effect of Plant Tannin and Glycerol on Thermoplastic Starch: Mechanical, Structural, Antimicrobial and Biodegradable Properties. Carbohydrate Polymers, 295, 119869. https://doi.org/10.1016/j.carbpol.2022.119869.

Paradowska-Stolarz, A., Wieckiewicz, M., Owczarek, A., and Wezgowiec, J., 2021. Natural Polymers for the Maintenance of Oral Health: Review of Recent Advances and Perspectives. International Journal of Molecular Sciences, 22, 10337. https://doi.org/10.3390/ijms221910337.

Ortiz, S.P., 2023. Are Bioplastics the Solution to the Plastic Pollution Problem?. PLOS Biology, 21, e3002045. https://doi.org/10.1371/journal.pbio.3002045.

Pooja, N., Banik, S., Chakraborty, I., Sudeeksha, H.C., Mal, S.S., Srisungsitthisunti, P., Patil, A., Mahato, K.K., and Mazumder, N., 2024. Comparative Analysis of Biopolymer Films Derived from Corn and Potato Starch with Insights into Morphological, Structural and Thermal Properties. Discover Sustainability, 5, 467. https://doi.org/10.1007/s43621-024-00626-3.

Pooja, N., Chakraborty, I., Rahman, Md.H., and Mazumder, N., 2023. An Insight on Sources and Biodegradation of Bioplastics: A Review. 3 Biotech, 13, 220. https://doi.org/10.1007/s13205-023-03638-4.

Sen, S., and Patwari, G.N., 2018. Electrostatics and Dispersion in X–H···Y (X = C, N, O; Y = N, O) Hydrogen Bonds and Their Role in X–H Vibrational Frequency Shifts. ACS Omega, 3, 18518–18527. https://doi.org/10.1021/acsomega.8b01802.

Tafa, K.D., Satheesh, N., and Abera, W., 2023. Mechanical Properties of Tef Starch Based Edible Films: Development and Process Optimization. Heliyon, 9, e13160. https://doi.org/10.1016/j.heliyon.2023.e13160.

Tan, S.X., Ong, H.C., Andriyana, A., Lim, S., Pang, Y.L., Kusumo, F., and Ngoh, G.C., 2022. Characterization and Parametric Study on Mechanical Properties Enhancement in Biodegradable Chitosan-Reinforced Starch-Based Bioplastic Film. Polymers, 14, 278. https://doi.org/10.3390/polym14020278.

Refbacks

  • There are currently no refbacks.