Analisis kualitas soal penilaian tengah semester biologi dengan teori tes klasik dan Rasch model

Damasus Nosi Resi

Sari

EN

This research aims to determine the quality of odd semester assessment questions for class X in Biology for the 2023/2024 academic year. This research used a quantitative descriptive method involving 30 students with 30 questions being tested. Data were analyzed using classical test theory and processed using Microsoft Excel and Rasch models, which were processed using the Winstep program. The quality of the item questions tested includes difficulty level, distinguishing power, distractor effectiveness, validity, and reliability. The results of the CTT analysis show two categories of difficulty, namely easy (13.3%) and medium (86.7%) questions. There are four categories of differentiating power: low, sufficient, high, and very high. The effectiveness of functioning distractors was 16.7%, while non-functional ones were 83.3%. The validity of valid questions is 20%, and invalid is 80%. Meanwhile, the level of reliability is categorized as unreliable, with a value of r11 = 0.079 (very low). The results of the IRT analysis show that the difficulty level of the questions is in three categories, namely easy (20%), medium (66.7%), and difficult (13.3%). Differentiating power is only categorized as low. The effectiveness of functioning distractors was 43.3%, and non-functioning was 56.7%. The validity of the questions is classified as valid 63.7% and invalid 36.3. Person reliability is 0.03 in the weak category, while item reliability is 0.30 in the weak category. This study provides insight into the importance of using appropriate methodology for problem analysis, using both classical test theory and the Rasch model, which can help create evaluation instruments in the future.

 

ID

Tujuan penelitian ini untuk mengetahui kualitas soal Penilaian Tengah Semester ganjil kelas X mata pelajaran Biologi tahun pelajaran 2023/2024. Penelitian ini menggunakan metode deskriptif kuantitatif yang melibatkan 30 siswa dengan 30 soal yang diujikan. Data dianalisis dengan teori tes klasik yang diolah menggunakan Microsoft Excel dan Rasch  model yang diolah dengan program Winstep. Kualitas item soal yang diuji meliputi tingkat kesukaran, daya pembeda, efektivitas distraktor, validitas dan reliabilitas. Hasil analisis CTT menunjukkan tingkat kesukaran terdapat dua kategori yaitu soal kategori mudah (13,3%) dan sedang (86,7%). Daya pembeda terdapat empat kategori yaitu rendah, cukup, tinggi dan sangat tinggi. Efektifitas distraktor berfungsi sebanyak 16,7% sedangkan yang tidak berfungsi 83,3%. Validitas butir soal yang valid terdapat 20% dan tidak valid 80%. Sedangkan tingkat reliabilitas dikategorikan tidak reliabel dengan nilai r11= 0,079 (sangat rendah). Hasil analisis dengan IRT menunjukkan tingkat kesukaran soal terdapat tiga kategori yaitu mudah (20%), sedang (66,7%) dan sulit (13,3%). Daya pembeda hanya dikategorikan rendah. Efektifitas distraktor yang berfungsi sebanyak 43,3% dan tidak berfungsi 56,7%. Validitas butir soal tergolong valid 63,7% dan tidak valid 36,3. Reliabilitas person sebesar 0,03 dengan kategori lemah sedangkan reliabilitas item sebesar 0,30 dengan kategori lemah. Penelitian ini memberikan wawasan tentang pentingnya menggunakan metodologi yang tepat dalam analisis soal, baik menggunakan teori tes klasik maupun model Rasch , yang dapat membantu dalam pembuatan instrumen evaluasi di masa depan.

Kata Kunci

Classical test theory; Item analysis; Rasch Model;

Teks Lengkap:

PDF

Referensi

Alfarisa, F., & Purnama, D. N. (2019). Analisis Butir Soal Ulangan Akhir Semester Mata Pelajaran Ekonomi SMA Menggunakan RASCH Model, 11(2), 366-374. https://doi.org/10.23887/jjpe.v11i2.20878

Andayani, F., Tindangen, M., & Haryanto, Z. (2017). Analisis Permasalahan Guru Terkait Perencanaan dan Pelaksanaan Perangkat Pembelajaran Biologi Melalui Model Problem Based Learning dan Media Realita di SMA. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 2(10), 1425–1429. http://journal.um.ac.id/index.php/jptpp/

Egger, R. (2020). A problem raising device. Was Lehrende bei einem Verzicht auf Vorlesungen verlieren würden. https://doi.org/10.1007/978-3-658-29049-8_11

Eliza, E., Djudin, T., & Oktavianty, E. (2022). Development of Critical Thinking Ability Test using the Rasch Model on Substance Pressure Materials. Prisma Sains : Jurnal Pengkajian Ilmu Dan Pembelajaran Matematika Dan IPA IKIP Mataram, 10(4), 842-855. https://doi.org/10.33394/j-ps.v10i4.5987

Erfan, M., Maulyda, M. A., Hidayati, V. R., Astria, F. P., & Ratu, T. (2020). Analisis Kualitas Soal Kemampuan Membedakan Rangkaian Seri dan Pararel Melalui Teori Tes Klasik Dan Model Rasch . Indonesian Journal of Educational Research and Review, 3(1), 11–19. https://doi.org/10.23887/ijerr.v3i1.24080

Fauziana, A., & Dessy Wulansari, A. (2021). Analisis Kualitas Butir Soal Ulangan Harian di Sekolah Dasar dengan Model Rasch . Ibriez : Jurnal Kependidikan Dasar Islam Berbasis Sains, 6, 10–19. https://doi.org/10.21154//ibriez.v6i1.112

Handayani, S. (2022). Analisis uas biologi kelas x dengan teori tes klasik dan item response theory (Rasch model). Bio-Pedagogi, 11(2), 76-90. https://doi.org/10.20961/bio-pedagogi.v11i2.63177

Hizqiyah, I. Y. N., Widodo, A., Sriyati, S., & Ahmad, A. (2023). Development of a Digital Problem Solving Skills Test Instrument: Model Rasch Analysis. Jurnal Penelitian Pendidikan IPA, 9(4), 1658–1663. https://doi.org/10.29303/jppipa.v9i4.2671

Lestari, N. I., Razak, A., Lufri, L., & Zulyusri, Z. (2022). Analisis Pelaksanaan Evaluasi Untuk Meningkatkan Mutu Pembelajaran Biologi Di Sekolah. Bioilmi: Jurnal Pendidikan, 8(2), 114–127. https://doi.org/10.19109/bioilmi.v8i2.11629

Maulida, S., Fatma, S. N., Fajriyah, D. T., Zahroturrosyidah, R., Hidayat, R. R., & Nahriyah, A. (2023). Analisis Hasil Evaluasi Melalui Pemberian Skor Tes Objektif dan Essay Serta Buku Catatan Lengkap Dan Tidak Lengkap. Jurnal Ilmiah Keislaman, 9(1), 2302–4801.https://doi.org/10.21154//ibriez.v6i1.112

Misri, M. A., Saifuddin, S., Akbar, R. O., & Kamelia, N. R. (2021). Development and evaluation of a HOTS-based test for matrix topic: A classical test and item response theory. Beta: Jurnal Tadris Matematika, 14(2), 126–141. https://doi.org/10.20414/betajtm.v14i2.383

Morville, A. Le, Wagman, P., & Håkansson, C. (2024). A Rasch analysis of the Danish version of the occupational balance questionnaire (OBQ11). Scandinavian Journal of Occupational Therapy, 31(1). https://doi.org/10.1080/11038128.2024.2327356

Myrzagaliyeva, S., Izbassarova, R., Kuanyshbekova, A., & Ibadullayeva, S. (2024). Assessment of effectiveness of practice teaching biology methods in collective learning: the pilot study. BIO Web of Conferences, 100, 1–7. https://doi.org/10.1051/bioconf/202410001026

Nejati, R., & Jabbari, M. (2023). Evaluating the Validity of Meara and Rogers’ Vocabulary Aptitude Test: a Rasch Measurement Model Analysis. Issues in Language Studies, 12(2), 37–55. https://doi.org/10.33736/ils.5290.2023

Oliva, J. M., & Blanco, Á. (2023). Rasch analysis and validity of the construct understanding of the nature of models in Spanish-speaking students. European Journal of Science and Mathematics Education, 11(2), 344–359. https://doi.org/10.30935/scimath/12651

Prasetya, W. A., & Pratama, A. T. (2023). Item quality analysis using the Rasch model to measure critical thinking ability in the material of the human digestive system of Biology subject in high school. Jurnal Penelitian Dan Evaluasi Pendidikan, 27(1), 76–91. https://doi.org/10.21831/pep.v27i1.58873

Prieto, L., Alonso, J., & Lamarca, R. (2003). Classical test theory versus Rasch analysis for quality of life questionnaire reduction. Health and Quality of Life Outcomes, 1, 1–13. https://doi.org/10.1186/1477-7525-1-27

Purwaningsih, E. (2022). Pemahaman Guru Tentang Analisis Kualitas Tes Dan Butir Soal. Perspektif, 1(3), 225–230. https://doi.org/10.53947/perspekt.v1i3.98

Ramadhani, R., Syahputra, E., & Simamora, E. (2024). The construct validity of self-regulated learning questionnaire for senior high school students: a Rasch model analysis. International Journal of Evaluation and Research in Education , 13(3), 2032–2038. https://doi.org/10.11591/ijere.v13i3.26816

Sari, V. N. I., Utomo, A. P. Y., & Sumarwati. (2022). Kualitas Soal Bahasa Indonesia di SMP Muhammadiyah 1 Pontianak: Analisis Butir Soal Vina. Jurnal Pendidikan Bahasa Dan Sastra Indonesia, 11(2), 112–119. https://doi.org/10.15294/jpbsi.v11i2.58091

Skyttberg, N., Kottorp, A., & Alenius, L. S. (2023). Sound psychometric properties of a short new screening tool for patient safety climate: applying a Rasch model analysis. BMC Health Services Research, 23(1), 1–11. https://doi.org/10.1186/s12913-023-09768-y

Stano, F., Pellicciari, L., Porta, F. La, Piscitelli, D., Angilecchia, D., Signorelli, M., Giovannico, G., Pournajaf, S., & Caselli, S. (2024). Rasch Analysis of the Forgotten Joint Score in Patients With Total Hip Arthroplasty. Journal of Rehabilitation Medicine, 56(8), 1–9. https://doi.org/10.2340/jrm.v56.15774

Subali, B., Yogyakarta, U. N., Surakarta, U. M., Aminah, N. S., & Maret, U. S. (2021). The Comparison of Item Test Characteristics Viewed from Classic and Modern Test Theory. International Journal of Instruction, 14(1), 647–660. https://doi.org/10.29333/iji.2021.14139a

Tesio, L., Caronni, A., Simone, A., Kumbhare, D., & Scarano, S. (2024). Interpreting results from Rasch analysis 2. Advanced model applications and the data-model fit assessment. Journal Disability and Rehabilitation, 46(3), 604–617. https://doi.org/10.1080/09638288.2023.2169772

Zhong, J., Ma, H. Y., Wang, X. M., Huang, X. J., & Xu, M. Z. (2023). Rasch analysis of the Chinese version of the clinically useful depression outcome scale in patients with major depressive disorder. BMC Psychology, 11(1), 1–9. https://doi.org/10.1186/s40359-023-01255-7

Refbacks

  • Saat ini tidak ada refbacks.