Application of Electric Fields to Reduce Microorganism Contamination for Animal-Based Products
Abstract
Non-thermal preservation has become popular recently for the preservation of animal-based products. One of the non-thermal preservation methods is the electric field (EF) treatment of food, which can suppress enzyme and microorganism activity. The EF treatment itself consists of various types, including pulsed electric fields (PEF), high-voltage electric fields (HVEF), and alternating capacitive electric fields (ACEF and DCEF). This review discusses the EF treatment effects, especially PEF, on animal-based product preservation, including mechanisms, advantages and disadvantages, PEF application, and its preservation effect. PEF has the potential to be widely applied in food processing. The application of PEF (Pulsed Electric Field) can be applied to animal-based products and has an effect on population age and microbial production. This is because PEF can inhibit microbial activity and growth depending on process parameters, including pulse waveform, treatment time, pulse width, pulse frequency, EF strength, and food matrix type. PEF can be used for pretreatment of liquefaction processes.
Keywords
Full Text:
PDFReferences
Aadil, R. M., Zeng, X. A., Han, Z., Sahar, A., Khalil, A. A., Rahman, U. U., Khan, M., & Mehmood, T. (2018). Combined effects of pulsed electric field and ultrasound on bioactive compounds and microbial quality of grapefruit juice. Journal of Food Processing and Preservation, 42(2), 1–6. https://doi.org/10.1111/jfpp.13507
Alam, M. R., Lyng, J. G., Frontuto, D., Marra, F., & Cinquanta, L. (2018). Effect of Pulsed Electric Field Pretreatment on Drying Kinetics, Color, and Texture of Parsnip and Carrot. Journal of Food Science, 83(8), 2159–2166. https://doi.org/10.1111/1750-3841.14216
Álvarez, I., Raso, J., Palop, A., & Sala, F. J. (2000). Influence of different factors on the inactivation of Salmonella senftenberg by pulsed electric fields. International Journal of Food Microbiology, 55(1–3), 143–146. https://doi.org/10.1016/S0168-1605(00)00173-2
Arroyo, C., Eslami, S., Brunton, N. P., Arimi, J. M., Noci, F., & Lyng, J. G. (2015). An assessment of the impact of pulsed electric fields processing factors on oxidation, color, texture, and sensory attributes of turkey breast meat. Poultry Science, 94(5), 1088–1095. https://doi.org/10.3382/ps/pev097
Arshad, R. N., Abdul-Malek, Z., Roobab, U., Munir, M. A., Naderipour, A., Qureshi, M. I., El-Din Bekhit, A., Liu, Z. W., & Aadil, R. M. (2021). Pulsed electric field: A potential alternative towards a sustainable food processing. Trends in Food Science and Technology, 111(January), 43–54. https://doi.org/10.1016/j.tifs.2021.02.041
Atungulu, G., Atungulu, E., & Nishiyama, Y. (2005). Electrode configuration and treatment timing effects of electric fields on fruit putrefaction and molding post-harvest. Journal of Food Engineering, 70(4), 506–511. https://doi.org/10.1016/j.jfoodeng.2004.10.020
Bai, Y. X., & Sun, B. (2011). Study of electrohydrodynamic (EHD) drying technique for shrimps. Journal of Food Processing and Preservation, 35(6), 891–897. https://doi.org/10.1111/j.1745-4549.2011.00542.x
Barba, F. J., Parniakov, O., Pereira, S. A., Wiktor, A., Grimi, N., Boussetta, N., Saraiva, J. A., Raso, J., Martin-Belloso, O., Witrowa-Rajchert, D., Lebovka, N., & Vorobiev, E. (2015). Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International, 77, 773–798. https://doi.org/10.1016/j.foodres.2015.09.015
Bazhal, M., Lebovka, N., & Vorobiev, E. (2003). Optimization of Pulsed Electric Field Strength for Electroplasmolysis of Vegetable Tissues. Biosystems Engineering, 86(3), 339–345. https://doi.org/10.1016/S1537-5110(03)00139-9
Bouzrara, H., & Vorobiev, E. (2003). Solid-liquid expression of cellular materials enhanced by pulsed electric field. Chemical Engineering and Processing, 42(4), 249–257. https://doi.org/10.1016/S0255-2701(02)00010-7
Bu, D., Liu, Y., Zhou, Y., Xu, Z., Guo, L., Zhang, B., Liang, X., & Guan, Z. (2005). Inactivation effects of electrostatic field on Bacillus subtilis. Journal of Electrostatics, 63(6–10), 847–852. https://doi.org/10.1016/j.elstat.2005.03.080
Deeth, H. C., Datta, N., Ross, A. I. V., & Dam, X. T. (2007). Pulsed Electric Field Technology: Effect on Milk and Fruit Juices. In Advances in Thermal and Non-Thermal Food Preservation (pp. 241–269). Blackwell Publishing. https://doi.org/10.1002/9780470277898.ch13
Demir, E., Dymek, K., & Galindo, F. G. (2018). Technology Allowing Baby Spinach Leaves to Acquire Freezing Tolerance. Food and Bioprocess Technology, 11(4), 809–817. https://doi.org/10.1007/s11947-017-2044-7
Faridnia, F., Ma, Q. L., Bremer, P. J., Burritt, D. J., Hamid, N., & Oey, I. (2015). Effect of freezing as pre-treatment prior to pulsed electric field processing on quality traits of beef muscles. Innovative Food Science and Emerging Technologies, 29, 31–40. https://doi.org/10.1016/j.ifset.2014.09.007
Gavahian, M., Chu, Y. H., & Sastry, S. (2018). Extraction from Food and Natural Products by Moderate Electric Field: Mechanisms, Benefits, and Potential Industrial Applications. Comprehensive Reviews in Food Science and Food Safety, 17(4), 1040–1052. https://doi.org/10.1111/1541-4337.12362
Golberg, A., Sack, M., Teissie, J., Pataro, G., Pliquett, U., Saulis, G., Stefan, T., Miklavcic, D., Vorobiev, E., & Frey, W. (2016). Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnology for Biofuels, 9(1), 1–22. https://doi.org/10.1186/s13068-016-0508-z
Golzio, M., Teissié, J., & Rols, M. P. (2002). Direct visualization at the single-cell level of electrically mediated gene delivery. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 1292–1297. https://doi.org/10.1073/pnas.022646499
Gomes, A., Fernandes, E., & Lima, J. L. F. C. (2005). Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, 65(2–3), 45–80. https://doi.org/10.1016/j.jbbm.2005.10.003
Grant, S. S., Kaufmann, B. B., Chand, N. S., Haseley, N., & Hung, D. T. (2012). Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proceedings of the National Academy of Sciences of the United States of America, 109(30), 12147–12152. https://doi.org/10.1073/pnas.1203735109
Guerrero-Beltrán, J. A., & Welti-Chanes, J. (2015). Pulsed Electric Fields. In Encyclopedia of Food and Health (pp. 561–565). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00579-1
Heinz, V., Alvarez, I., Angersbach, A., & Knorr, D. (2001). Preservation of liquid foods by high intensity pulsed electric fields - Basic concepts for process design. Trends in Food Science and Technology, 12(3–4), 103–111. https://doi.org/10.1016/S0924-2244(01)00064-4
Hsieh, C. W., Lai, C. H., Ho, W. J., Huang, S. C., & Ko, W. C. (2010). Effect of thawing and cold storage on frozen chicken thigh meat quality by high-voltage electrostatic field. Journal of Food Science, 75(4), 193–197. https://doi.org/10.1111/j.1750-3841.2010.01594.x
Huang, W., Wang, J. Q., Song, H. Y., Zhang, Q., & Liu, G. F. (2017). Chemical analysis and in vitro antimicrobial effects and mechanism of action of Trachyspermum copticum essential oil against Escherichia coli. Asian Pacific Journal of Tropical Medicine, 10(7), 663–669. https://doi.org/10.1016/j.apjtm.2017.07.006
Ito, T., Kawamura, T., Nakagawa, A., Yamazaki, S., Syuto, B., & Takaki, K. (2014). Preservation of fresh food using AC electric field. Journal of Advanced Oxidation Technologies, 17(2), 249–253. https://doi.org/10.1515/jaots-2014-0210
Jin, T. Z., Yu, Y., & Gurtler, J. B. (2017). Effects of pulsed electric field processing on microbial survival, quality change and nutritional characteristics of blueberries. LWT - Food Science and Technology, 77, 517–524. https://doi.org/10.1016/j.lwt.2016.12.009
Kempkes, M., & Munderville, M. (2018). Pulsed electric fields (PEF) processing of fruit and vegetables. IEEE International Pulsed Power Conference, 2017-June(June). https://doi.org/10.1109/PPC.2017.8291186
Kotnik, T., & Miklavčič, D. (2006). Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophysical Journal, 90(2), 480–491. https://doi.org/10.1529/biophysj.105.070771
Kotnik, T., Pucihar, G., & Miklavčič, D. (2010). Induced transmembrane voltage and its correlation with electroporation- mediated molecular transport. Journal of Membrane Biology, 236(1), 3–13. https://doi.org/10.1007/s00232-010-9279-9
Kumar, Y., Bashir, A. A., & NIndore, avnath R.K. Vishwakarma, R. K. S. (2021). Pulsed Electric Field. In C. M. Galanakis (Ed.), Sustainable Food Processing and Engineering Challenges (pp. 137–179). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-822714-5.00005-X
Lasekan, O., Ng, S., Azeez, S., Shittu, R., Teoh, L., & Gholivand, S. (2017). Effect of Pulsed Electric Field Processing on Flavor and Color of Liquid Foods†. Journal of Food Processing and Preservation, 41(3), 1–14. https://doi.org/10.1111/jfpp.12940
Li, D., Jia, S., Zhang, L., Wang, Z., Pan, J., Zhu, B., & Luo, Y. (2017). Effect of using a high voltage electrostatic field on microbial communities, degradation of adenosine triphosphate, and water loss when thawing lightly-salted, frozen common carp (Cyprinus carpio). Journal of Food Engineering, 212, 226–233. https://doi.org/10.1016/j.jfoodeng.2017.06.003
Mahnič-Kalamiza, S., Vorobiev, E., & Miklavčič, D. (2014). Electroporation in Food Processing and Biorefinery. Journal of Membrane Biology, 247(12), 1279–1304. https://doi.org/10.1007/s00232-014-9737-x
Mendes-Oliveira, G., Jin, T. Z., & Campanella, O. H. (2020). Modeling the inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium in juices by pulsed electric fields: The role of the energy density. Journal of Food Engineering, 282. https://doi.org/10.1016/j.jfoodeng.2020.110001
Mirzaii, M., Alfi, A., Kasaeian, A., Norozi, P., Nasiri, M., Sarokhalil, D. D., Khoramrooz, S. S., Fazli, M., & Davardoost, F. (2015). Antibacterial effect of alternating current against Staphylococcus aureus and Pseudomonas aeroginosa. Russian Open Medical Journal, 4(2), 1–6. https://doi.org/10.15275/rusomj.2015.0203
Mohamed, M., & Eissa, A. (2012). Pulsed Electric Fields for Food Processing Technology. In Structure and Function of Food Engineering (pp. 275–306). http://cdn.intechopen.com/pdfs/38363/InTech-Pulsed_electric_fields_for_food_processing_technology.pdf
Morales-de la Peña, M., Welti-Chanes, J., & Martín-Belloso, O. (2019). Novel technologies to improve food safety and quality. Current Opinion in Food Science, 30, 1–7. https://doi.org/10.1016/j.cofs.2018.10.009
Mousakhani-Ganjeh, A., Hamdami, N., & Soltanizadeh, N. (2015). Impact of high voltage electric field thawing on the quality of frozen tuna fish (Thunnus albacares). Journal of Food Engineering, 156, 39–44. https://doi.org/10.1016/j.jfoodeng.2015.02.004
Nowosad, K., Sujka, M., Pankiewicz, U., & Kowalski, R. (2021). The application of PEF technology in food processing and human nutrition. Journal of Food Science and Technology, 58(2), 397–411. https://doi.org/10.1007/s13197-020-04512-4
Ostermeier, R., Giersemehl, P., Siemer, C., Töpfl, S., & Jäger, H. (2018). Influence of pulsed electric field (PEF) pre-treatment on the convective drying kinetics of onions. Journal of Food Engineering, 237(May), 110–117. https://doi.org/10.1016/j.jfoodeng.2018.05.010
Oziembłowski, M., & Kopeć, W. (2005). Pulsed Electric Fields (Pef) As an Unconventional Method of Food Preservation. Polish Journal of Food and Nutrition Sciences, 14(S1), 31–35.
Parniakov, O., Bals, O., Lebovka, N., & Vorobiev, E. (2016). Pulsed electric field assisted vacuum freeze-drying of apple tissue. Innovative Food Science and Emerging Technologies, 35, 52–57. https://doi.org/10.1016/j.ifset.2016.04.002
Picart, L., & Cheftel, J.-C. (2003). Pulsed electric fields. In Food Preservation Techniques. Woodhead Publishing Limited. https://doi.org/10.1533/9781855737143.3.360
Qi, M., Zhao, R., Liu, Q., Yan, H., Zhang, Y., Wang, S., & Yuan, Y. (2021). Antibacterial activity and mechanism of high voltage electrostatic field (HVEF) against Staphylococcus aureus in medium plates and food systems. Food Control, 120(August 2020), 107566. https://doi.org/10.1016/j.foodcont.2020.107566
Raso, J., Frey, W., Ferrari, G., Pataro, G., Knorr, D., Teissie, J., & Miklavčič, D. (2016). Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innovative Food Science and Emerging Technologies, 37, 312–321. https://doi.org/10.1016/j.ifset.2016.08.003
Sale, A. J. H., & Hamilton, W. A. (1967). BIOCHI1VflCA ET BIOPHYSICA ACTA 781 BBA 25 876 EFFECTS OF HIGH ELECTRIC FIELDS ON MICROORGANISMS I. KILLING OF BACTERIA AND YEASTS. Biochim. Biophys. Acta, 148, 781–788.
Shamsi, K., & Sherka, F. (2009). Application of Pulsed Electric Field for Milk Processing. Asian Journal of Food and Agro-Industry, 2(3), 216–244. http://www.dairyknowledge.in/sites/default/files/ch13_0.pdf
Singh, M., Patra, S., & Rajesh, K. S. (2021). Common techniques and methods for screening of natural products for developing of anticancer drugs. In Evolutionary Diversity as a Source for Anticancer Molecules (pp. 323–353). https://doi.org/https://doi.org/10.1016/B978-0-12-821710-8.00015-1Get
Tanino, T., Hirosawa, M., Moteki, R., Matsui, M., & Ohshima, T. (2020). Engineering of pulsed electric field treatment using carbon materials as electrode and application to pasteurization of sake. Journal of Electrostatics, 104(November 2019), 103424. https://doi.org/10.1016/j.elstat.2020.103424
Tieleman, D. P. (2004). The molecular basis of electroporation. BMC Biochemistry, 5(10), 1–12. https://doi.org/10.1186/1471-2091-5-10
Tsong, T. Y. (1996). Electrically Stimulated Membrane Breakdown. In Lynch P.T., Davey M.R. (eds) Electrical Manipulation of Cells (pp. 15–17). Spinger. https://doi.org/https://doi.org/10.1007/978-1-4613-1159-1_2
van Wyk, S., Silva, F. V. M., & Farid, M. M. (2019). Pulsed electric field treatment of red wine: Inactivation of Brettanomyces and potential hazard caused by metal ion dissolution. Innovative Food Science and Emerging Technologies, 52(June 2018), 57–65. https://doi.org/10.1016/j.ifset.2018.11.001
Wang, J., Song, H., Song, Z., Lu, Y., Yan, Y., & Li, F. (2020). Effect of Positive and Negative Corona Discharge Field on Vigor of Millet Seeds. IEEE Access, 8, 50268–50275. https://doi.org/10.1109/ACCESS.2020.2979288
Yawootti, A., Intra, P., Tippayawong, N., & Rattanadecho, P. (2015). An experimental study of relative humidity and air flow effects on positive and negative corona discharges in a corona-needle charger. Journal of Electrostatics, 77, 116–122. https://doi.org/10.1016/j.elstat.2015.07.011
Zderic, A., & Zondervan, E. (2016). Polyphenol extraction from fresh tea leaves by pulsed electric field: A study of mechanisms. Chemical Engineering Research and Design, 109, 586–592. https://doi.org/10.1016/j.cherd.2016.03.010
Zhang, Z. H., Wang, L. H., Zeng, X. A., Han, Z., & Brennan, C. S. (2019). Non-thermal technologies and its current and future application in the food industry: a review. International Journal of Food Science and Technology, 54(1), 1–13. https://doi.org/10.1111/ijfs.13903
Zhao, W., Yang, R., & Zhang, H. Q. (2012). Recent advances in the action of pulsed electric fields on enzymes and food component proteins. Trends in Food Science and Technology, 27(2), 83–96. https://doi.org/10.1016/j.tifs.2012.05.007
Refbacks
- There are currently no refbacks.