MODIFICATION OF POROUS ADLAY (Coix lacryma-jobi L.) STARCH BY ULTRASONICATION AND OZONATION
Abstract
Adlay (Coix lacryma-jobi L.) is a potential source of starch but has not been utilized optimally. Native adlay starch has several weaknesses such as functional properties of low swelling volume and solubility, prone to retrogradation, and low stability. Physical modification of ultrasonication and chemical modification by oxidation using ozone can be an alternative to improve the functional properties of adlay starch through the formation of porous starch. The aim of this research was to produce porous adlay starch by ultrasonication and ozonation. The study consisted of several different treatments on hanjeli starch (ozonation starch, ultrasonication of 15 minutes, ultrasonication of 30 minutes, combined ultrasonication of 15 minutes and 30 minutes with ozonation). The results showed the appearance of pores on the surface of the granules of modified adlay starch with the best results being modified combination of ultrasonication 30 minutes and ozonation, which resulted in a decrease in swelling volume from 18.13 ± 3.98 mL/g to 15.71 ± 0.35 mL/g, an increase in solubility from 6.76 ± 0.62% to 9.59 ± 0.44%, and a decrease in water absorption capacity from 1.25 ± 0.02 g/g to 1.13 ± 0.02 g/ g. Modification of adlay starch by ultrasonication, ozonation, and their combination effectively produced porous starch granules, but did not cause the formation of new functional groups in starch.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Amini, A. M., Razavi, S. M. A. dan Mortazavi, S. A. (2015). Morphological, physicochemical, and viscoelastic properties of sonicated corn starch. Carbohydrate Polymers, 122, 282–292. https://doi.org/10.1016/j.carbpol.2015.01.020
Ashogbon, A. O. dan Akintayo, E. T. (2014). Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch/Staerke, 66(1–2), 41–57. https://doi.org/10.1002/star.201300106
Bai, W., Hébraud, P., Ashokkumar, M. dan Hemar, Y. (2017). Investigation on the pitting of potato starch granules during high frequency ultrasound treatment. Ultrasonics Sonochemistry, 35, 547–555. https://doi.org/10.1016/j.ultsonch.2016.05.022
BeMiller, J. N. dan Huber, K. C. (2015). Physical Modification of Food Starch Functionalities. Annual Review of Food Science and Technology, 6(1), 19–69. https://doi.org/10.1146/annurev-food-022814-015552
Beuchat, L. R. (1977). Functional and Electrophoretic Characteristics of Succinylated Peanut Flour Protein. Journal of Agricultural and Food Chemistry, 25(2), 258–261. https://doi.org/10.1021/jf60210a044
Cahyana, Y., Titipanillah, R., Mardawati, E., Sukarminah, E., Rialita, T., Andoyo, R., Djali, M., Hanidah, I. I., Setiasih, I. S. dan Handarini, K. (2018). Non-starch contents affect the susceptibility of banana starch and flour to ozonation. Journal of Food Science and Technology, 55(5), 1726–1733. https://doi.org/10.1007/s13197-018-3085-2
Capule, A. B. dan Trinidad, T. P. (2016). Isolation and characterization of native and modified starch from adlay (Coix lacryma jobi-L.). International Food Research Journal, 23(3), 1199–1206.
Castanha, N., Lima, D. C., Matta Junior, M. D., Campanella, O. H. dan Augusto, P. E. D. (2019). Combining ozone and ultrasound technologies to modify maize starch. International Journal of Biological Macromolecules, 139, 63–74. https://doi.org/10.1016/j.ijbiomac.2019.07.161
Castanha, Nanci, Santos, D. N. e., Cunha, R. L. dan Augusto, P. E. D. (2019). Properties and possible applications of ozone-modified potato starch. Food Research International, 116(September 2018), 1192–1201. https://doi.org/10.1016/j.foodres.2018.09.064
Çatal, H. dan Ibanoǧlu, Ş. (2014). Effect of aqueous ozonation on the pasting, flow and gelatinization properties of wheat starch. LWT - Food Science and Technology, 59(1), 577–582. https://doi.org/10.1016/j.lwt.2014.04.025
Chaisiricharoenkul, J., Tongta, S. dan Intarapichet, K. (2011). Structure and Chemical and Physicochemical Properties of Job ’ S Tear (Coix Lacryma-Jobi L.) Kernels and Flours. Suranaree J.Sci. Technol., 18(2), 109–122.
Chemat, F., Zill-E-Huma dan Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023
Collado, L. S. dan Corke, H. (1999). Heat-moisture treatment effects on sweetpotato starches differing in amylose content. Food Chemistry, 65(3), 339–346. https://doi.org/10.1016/S0308-8146(98)00228-3
Comin, L. M., Temelli, F. dan Saldaña, M. D. A. (2012). Impregnation of flax oil in pregelatinized corn starch using supercritical CO 2. Journal of Supercritical Fluids, 61, 221–228. https://doi.org/10.1016/j.supflu.2011.08.013
Deka, D. dan Sit, N. (2016). Dual modification of taro starch by microwave and other heat moisture treatments. International Journal of Biological Macromolecules, 92, 416–422. https://doi.org/10.1016/j.ijbiomac.2016.07.040
Du, S. K., Jiang, H., Ai, Y. dan Jane, J. L. (2014). Physicochemical properties and digestibility of common bean (Phaseolus vulgaris L.) starches. Carbohydrate Polymers, 108(1), 200–205. https://doi.org/10.1016/j.carbpol.2014.03.004
Ehtiati, A., Koocheki, A., Shahidi, F., Mohammad, S. dan Razavi, A. (2016). Pasting , rheological and retrogradation properties of starches from dual-purpose sorghum lines. 1–30. https://doi.org/10.1002/star.201600262
Falsafi, S. R., Maghsoudlou, Y., Rostamabadi, H., Rostamabadi, M. M., Hamedi, H. dan Hosseini, S. M. H. (2019). Preparation of physically modified oat starch with different sonication treatments. Food Hydrocolloids, 89, 311–320. https://doi.org/10.1016/j.foodhyd.2018.10.046
Halal, S. L. M. El, Colussi, R., Pinto, V. Z., Bartz, J., Radunz, M., Carreño, N. L. V., Dias, A. R. G. dan Zavareze, E. D. R. (2015). Structure, morphology and functionality of acetylated and oxidised barley starches. Food Chemistry, 168, 247–256. https://doi.org/10.1016/j.foodchem.2014.07.046
Herceg, I. L., Jambrak, A. R., Šubarić, D., Brnčić, M., Brnčić, S. R., Badanjak, M., Tripalo, B., Ježek, D., Novotni, D. dan Herceg, Z. (2010). Texture and pasting properties of ultrasonically treated corn starch. Czech Journal of Food Sciences, 28(2), 83–93. https://doi.org/10.17221/50/2009-cjfs
Hu, A., Jiao, S., Zheng, J., Li, L., Fan, Y., Chen, L. dan Zhang, Z. (2015). Ultrasonic frequency effect on corn starch and its cavitation. LWT - Food Science and Technology, 60(2), 941–947. https://doi.org/10.1016/j.lwt.2014.10.048
Hu, A., Li, Y. dan Zheng, J. (2019). Dual-frequency ultrasonic effect on the structure and properties of starch with different size. Lwt, 106(29), 254–262. https://doi.org/10.1016/j.lwt.2019.02.040
Jambrak, A. R., Herceg, Z., Šubarić, D., Babić, J., Brnčić, M., Brnčić, S. R., Bosiljkov, T., Čvek, D., Tripalo, B. dan Gelo, J. (2010). Ultrasound effect on physical properties of corn starch. Carbohydrate Polymers, 79(1), 91–100. https://doi.org/10.1016/j.carbpol.2009.07.051
Kang, N., Zuo, Y. J., Hilliou, L., Ashokkumar, M. dan Hemar, Y. (2016). Viscosity and hydrodynamic radius relationship of high-power ultrasound depolymerised starch pastes with different amylose content. Food Hydrocolloids, 52, 183–191. https://doi.org/10.1016/j.foodhyd.2015.06.017
Katyal, M., Singh, N., Chopra, N. dan Kaur, A. (2019). Hard, medium-hard and extraordinarily soft wheat varieties: Comparison and relationship between various starch properties. International Journal of Biological Macromolecules, 123, 1143–1149. https://doi.org/10.1016/j.ijbiomac.2018.11.192
Kaur, H. dan Gill, B. S. (2019). Effect of high-intensity ultrasound treatment on nutritional, rheological and structural properties of starches obtained from different cereals. International Journal of Biological Macromolecules, 126, 367–375. https://doi.org/10.1016/j.ijbiomac.2018.12.149
Kaur, M., Sandhu, K. S. dan Lim, S. T. (2010). Microstructure, physicochemical properties and in vitro digestibility of starches from different Indian lentil (Lens culinaris) cultivars. Carbohydrate Polymers, 79(2), 349–355. https://doi.org/10.1016/j.carbpol.2009.08.017
Li, H., Wang, R., Zhang, Q., Li, G., Shan, Y. dan Ding, S. (2019). Morphological, structural, and physicochemical properties of starch isolated from different lily cultivars grown in China. International Journal of Food Properties, 22(1), 737–757. https://doi.org/10.1080/10942912.2019.1603998
Li, W., Shu, C., Zhang, P. dan Shen, Q. (2011). Properties of Starch Separated From Ten Mung Bean Varieties and Seeds Processing Characteristics. Food and Bioprocess Technology, 4(5), 814–821. https://doi.org/10.1007/s11947-010-0421-6
Majzoobi, M., Hedayati, S. dan Farahnaky, A. (2015). Functional properties of microporous wheat starch produced by α-amylase and sonication. Food Bioscience, 11, 79–84. https://doi.org/10.1016/j.fbio.2015.05.001
Mi, X., Wang, W., Gao, J., Long, Y., Xing, F., Wang, X., Xu, F., You, X., Li, S. dan Liu, Y. (2012). Fabrication of highly porous starch monoliths and their application as green desiccants. Polymers for Advanced Technologies, 23(1), 38–47. https://doi.org/10.1002/pat.1836
Miao, L., Zhao, S., Zhang, B., Tan, M., Niu, M., Jia, C. dan Huang, Q. (2018). Understanding the supramolecular structures and pasting features of adlay seed starches. Food Hydrocolloids, 83, 411–418. https://doi.org/10.1016/j.foodhyd.2018.05.034
Moorthy, S. N., Sajeev, M. S. dan Anish, R. J. (2018). Functionality of Tuber Starches. In Starch in Food: Structure, Function and Applications: Second Edition. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100868-3.00011-1
Murdianto, W., Anggrahini, S., . S. dan Pranoto, Y. (2019). Modification of Gajah Cassava Starch Originating from East Borneo, Indonesia, using Ozone Oxidation. Pakistan Journal of Nutrition, 18(5), 471–478. https://doi.org/10.3923/pjn.2019.471.478
Murdianto, W., Pranoto, Y. dan Anggrahini, S. (2019). Alteration of cassava starch properties after ozone-oxidation treatment in different time. International Journal of Food Science and Nutrition International, 4(5), 56–60.
Oladebeye, A. O., Oshodi, A. A., Amoo, I. A. dan Karim, A. A. (2013). Functional, thermal and molecular behaviours of ozone-oxidised cocoyam and yam starches. Food Chemistry, 141(2), 1416–1423. https://doi.org/10.1016/j.foodchem.2013.04.080
Przetaczek-Rożnowska, I., Fortuna, T., Wodniak, M., Łabanowska, M., Pająk, P. dan Królikowska, K. (2019). Properties of potato starch treated with microwave radiation and enriched with mineral additives. International Journal of Biological Macromolecules, 124, 229–234. https://doi.org/10.1016/j.ijbiomac.2018.11.153
Sandhu, H. P. S., Manthey, F. A. dan Simsek, S. (2012). Ozone gas affects physical and chemical properties of wheat (Triticum aestivum L.) starch. Carbohydrate Polymers, 87(2), 1261–1268. https://doi.org/10.1016/j.carbpol.2011.09.003
Subroto, E., Indiarto, R., Marta, H. dan Shalihah, S. (2019). Effect of heat - moisture treatment on functional and pasting properties of potato (Solanum tuberosum L. var. Granola) starch. Food Research, 3(5), 469–476. https://doi.org/10.26656/fr.2017.3(5).110
Sujka, M. dan Jamroz, J. (2013). Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocolloids, 31(2), 413–419. https://doi.org/10.1016/j.foodhyd.2012.11.027
Sumardiono, S., Cahyono, H., Jos, B., Pudjihastuti, I., Yafiz, A. M. dan Rachmasari, M. (2021). Physicochemical properties of sago ozone oxidation: The effect of reaction time, acidity, and concentration of starch. Foods, 10(6). https://doi.org/10.3390/foods10061309
Wang, S., Wang, J., Zhang, W., Li, C., Yu, J. dan Wang, S. (2015). Molecular order and functional properties of starches from three waxy wheat varieties grown in China. Food Chemistry, 181, 43–50. https://doi.org/10.1016/j.foodchem.2015.02.065
Wani, I. A., Sogi, D. S., Hamdani, A. M., Gani, A., Bhat, N. A. dan Shah, A. (2016). Isolation, composition, and physicochemical properties of starch from legumes: A review. Starch/Staerke, 68(9–10), 834–845. https://doi.org/10.1002/star.201600007
Wu, Y., Du, X., Ge, H. dan Lv, Z. (2011). Preparation of microporous starch by glucoamylase and ultrasound. Starch/Staerke, 63(4), 217–225. https://doi.org/10.1002/star.201000036
Yang, W., Kong, X., Zheng, Y., Sun, W., Chen, S., Liu, D., Zhang, H., Fang, H., Tian, J. dan Ye, X. (2019). Controlled ultrasound treatments modify the morphology and physical properties of rice starch rather than the fine structure. Ultrasonics Sonochemistry, 59, 104709. https://doi.org/10.1016/j.ultsonch.2019.104709
Yu, S., Ma, Y., Menager, L. dan Sun, D. W. (2012). Physicochemical Properties of Starch and Flour from Different Rice Cultivars. Food and Bioprocess Technology, 5(2), 626–637. https://doi.org/10.1007/s11947-010-0330-8
Zeng, J., Li, G., Gao, H. dan Ru, Z. (2011). Comparison of A and B starch granules from three wheat varieties. Molecules, 16(12), 10570–10591. https://doi.org/10.3390/molecules161210570
Zhang, B., Cui, D., Liu, M., Gong, H., Huang, Y. dan Han, F. (2012). Corn porous starch: Preparation, characterization and adsorption property. International Journal of Biological Macromolecules, 50(1), 250–256. https://doi.org/10.1016/j.ijbiomac.2011.11.002
Zhang, Y., Hu, M., Zhu, K., Wu, G. dan Tan, L. (2018). Functional properties and utilization of Artocarpus heterophyllus Lam seed starch from new species in China. In International Journal of Biological Macromolecules (Vol. 107). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2017.10.001
Zhu, F. (2015). Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends in Food Science and Technology, 43(1), 1–17. https://doi.org/10.1016/j.tifs.2014.12.008
Zhu, F. (2017). Coix: Chemical composition and health effects. Trends in Food Science and Technology, 61, 160–175. https://doi.org/10.1016/j.tifs.2016.12.003
Zuo, J. Y., Knoerzer, K., Mawson, R., Kentish, S. dan Ashokkumar, M. (2009). The pasting properties of sonicated waxy rice starch suspensions. Ultrasonics Sonochemistry, 16(4), 462–468. https://doi.org/10.1016/j.ultsonch.2009.01.002
Refbacks
- There are currently no refbacks.