Uji Toleransi Logam Berat Bakteri Hidrokarbonoklastik dan Uji Kemampuan Micrococcus sp. LII61 dalam Menurunkan Kromium (Cr VI), Tembaga (Cu II), Seng (Zn II)
Abstract
Keywords
Full Text:
PDFReferences
Acikel, Y.S. (2011). Use of biosurfactants in the removal of heavy metal ions from soils. Environmental Pollution 20: 182-223.
Alam, M.Z, Ahmad, S, & Malik, A. (2011). Prevalence of heavy metal resistance in bacteria isolated from tannery effluents and affected soil. Environmental Monitoring and Assessment, 178: 281:291.
Ali, H. & Khan, E. (2018). Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chain/webs-concepst and implications for wildlife and human health. Human and Ecological Risk Asssessment: An International Journal, 24(8): 1-24.
Anwar, M., Ali, S., & Al-Taee, A. (2017). Evaluation of heavy emtals resistant Micrococcus sp. isolated from Rivers in Basra, Iraq. Journal of Bioremediation and Biodegradation, 8 (1): 2-4.
Benmalek, Y. & Fardeau, M.L. (2016). Isolation and characterization of metal-resistant bacterial strain from wastewater and evaluation of its capacity in metal-ions removal using living and dry bacterial cells. Internation Journal Environmental Science and Technology, 13: 2153-2162.
Binupriya, A.R, Sathiskumar, M, Swaminathan, K, Jeong E.S., Yun, S.E., & Pattabi, S. (2006). Biosorption of metal ions from aqueous solution and electroplating industry wastewater by 7Aspergillus japonicus: Phytotoxicity studies. Bulletin Environmental Contamination and Toxicoly, 77: 219-27
Cabral, L, Giovanella, P, Gianello, C, Bento, F.M, Andreazza, R, Camargo, F.A.O. (2012). Isolation and characterization of bacteria from mercury contaminated sites in Rio Grande do Sul, Brazil, and assessment of methylmercury removal capability of a Pseudomonas putida V1 strain. Biodegradation, 24: 319-331.
Cabrero, A, Fernandez,S, Mirada, F, & Garcia, J. (1998). Effects of copper and zinc on the activated sludge bacteria growth kinetics. Water Research, 32(5): 1355-1362.
Chen, X, Shi, J, Chen, Y, Xu, X, Xu, S, & Wang, Y. (2006). Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal polluted soil. Canadian Journal of Microbiology , 52 (4): 308-316.
Chen, X.C, Wang, Y.P, Lin, Q, Shi, J.Y, Wu, W.X, & Chen, Y.X. (2005). Biosorption of copper (II) and zinc (II) from aqueous solution by Pseudomonas putida CZ1. Colloids and Surfaces B, 46: 101-107.
Chunxi, K, Pingxiao, W, yuewu, L, Bo, R, Nengwu, Z, & Zhi, D. (2014). Estimates of heavymetal tolerance and chromium (VI) reducing ability of Pseudomonas aeruginosa CCTCC AB93066: chromium (VI) toxicity and environmental parameters optimization. World Journal Microbiology and Biotechnology, 30: 2733-2746.
Cristani, M, Naccari, C, Nostro, A, Pizzimenti, A, Trombetta, D, & Pizzimenti, F. (2012). Possible use of Serratia marcescens in toxic metal biosorption. Environmental Science and Pollution Research, 19(1): 161-168.
Gupta, P. & Diwan, B. (2017). Bacterial exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports, 13: 58-71.
Hassen, A, Saidi, N, Cherif, M, & Boudabus, A. (1998). Resistance of environmental bacteria to heavy metal. Bioresource Technology, 64 (1): 7-15.
Huang, F, &g, Z, Guo, C, Lu, G, Gu, R,R, Liu, H, & Zhang, H. (2013). Biosorption of Cd (II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids and Surfaces B: Biointerfaces, 107: 11-18.
Irawati, W, Parhusip, A.J.N, & Sopiah, R.N. (2015). Heavy metals biosorption. Microbiology Indonesia, 9(4): 163-170.
Jiang, W, Saxena, A, Song, b, Ward, B.B, Beveridge T.J, & Myneni S.C.B. (2004). Elucidation of functional groups on Gram-positif and Gram-negative bacterial surfaces using infrared spectroscopy. Langmuir, 20: 11433-11442.
Kilic, N.K.. & Donmez, G. (2008). Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., and Ochrobactrum sp. Journal of Hazardous Materials, 154: 1019-1024.
Kumar, R, Nongkhlaw, M, Acharya, C, & Joshi, S.R. (2013). Growth media composition and heavy metal tolerance behaviour of bacteria characterized from the sub-serface soil of uranium rich ore bearing site of Domiasiat in Meghalaya. Indian Journal of Biotechnology, 12: 115-119.
Li, H, Lin, Y, Guan, W, Chang, J, Xu, Lin, Guo, J, & Wei, G. (2010). Biosorption of Zn (II) bu live and dead cells of Steptomyces ciscaucasicus strain CCNWHX 72-14. Journal of hazardous materials, 179: 151-159.
Marzan, L.W, Hossain, M., Mina, S.A, Akter, Y, & Chodhury, A.M.M.A. Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation.
Mohammed, J.N, Aliyu, M.M, Kasim, Z.J., & Gana, M. (2017). Heavy metal tolerance of bacteria isolated from mechanic workshops. Nigerian Journal of Microbiology, 31(1): 3867-3872.
Nugroho, A. (2006). Bioremediasi hidrokarbon minyak bumi. Jakarta, Indonesia: Graha Ilmu.
Oves, M, Saghir Khan, M, & Zaidi, A. (2013). Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi Journal of Biological Sciences, 20: 121-129.
Park, D, Yun, Y.S, & Park, J.M. (2005) Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics. Process Biochemical, 40: 2559-65.
Pruthi, V. & Comeotra, S.S. (1997) Rapid identification of biosurfactant producing bacterial strain using a cell surface hidrophobicity techniques. Biotechnology Techniques, 11: 671-674.
Puyen, Z.M, Villagrasa, E, Maldonado, J, Diestra, E, Esteve, I, & Sole, A. (2012). Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008. Biosource Technology, 126: 233-237.
Rojo, F. (2009). Degradation of alkanes by bacteria. Environmental Microbiology, 11(10): 2477-2490.
Sengor, S.S, Gikas, P, Moberly, J.G, Peyton, B.M, & Ginn, T.R. (2012). Comparison of single and joint effects of Zn and Cu in continous flow and batch reactors. Journal of Chemical Technology and Biotechnology, 87(3): 374-380.
Silva, R.M.P, Rodriguez, A.A, Oca, J.M.G.M.D, & Moreno, D.C. (2009) Biosorption of chromium, copper, manganese and zinc by Pseudomoas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresource Technology, 100: 1533-1538.
Tan, T, & Cheng, P. (2003). Biosorption of metal ions with Penicillium chrysogenum. Applied of Biochemistry and Biotechnology, 104(2):119-128.
Tunali, S, Cabuk, A, & Akar, T. (2006). Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chemical Engineering JOurnal, 115(3): 203-211.
Uslu, G & Tanyol, M. (2006). Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: effect of temperature. Journal of Hazardous Material, 135: 87-93.
Vijayaraghavan, K. & Yun, Yeoung-Sang. (2008). Bacterial biosorbents and biosorption. Biotechnology advances, 26: 266-291.
Wang, Q, Dai, J, Yu, Y, Shen, T, Liu, J, & Wang, R. (2010). Efficiencies of different microbial parameters as indicators to asses slight metal pollution in a farm near a gold mining area. Environmental Monitoring and Assessment, 161: 495-508.
Wani, P.A. & Ayoola, O.H. (2015). Bioreduction of Cr (IV) by heavy metal resistant Pseudomonas species. Journal of Environmental Science and Technology, 8(3): 122-130.
Yilmaz, E.I. (2003). Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Research in microbiology, 154: 409-415.
DOI: https://doi.org/10.20961/bioedukasi-uns.v12i1.27414
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Bioedukasi: Jurnal Pendidikan Biologi
|
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.