Synthesis and Characterization of Microcellulose from Red Algae Gracillaria longissima and Its Effect on the Properties of Composite Films from Avocado Seed Starch

Muvika Putri Puspitasari, Ifa Puspasari, Diana Diana, Yulirohyami Yulirohyami

Abstract

Red algae are abundant worldwide, and in recent years, their use to make more valuable products has grown significantly. The present study used red algae Gracillaria longissima as raw material to produce microcrystalline cellulose to strengthen avocado seed-based film. Microcrystalline cellulose was obtained by chemically treating the red algae with alkali, bleaching, and acid hydrolysis. The rough and irregularly shaped microcrystalline cellulose was successfully isolated at the micrometric scale with an average particle size of 44.1 μm. The as-extracted microcrystalline cellulose was used as filler to produce avocado seed-based composite films with improved tensile and barrier properties. Adding 4 wt% microcrystalline cellulose into the avocado seed matrix increased tensile strength by 152% and reduced elongation by 63%. Additionally, the barrier properties of avocado seed composite films were similar to those of cellulose derivatives utilized in food packaging. Adding 4 wt% microcrystalline cellulose into the avocado seed matrix reduced the water vapor transmission rate by 43% of the neat starch value. Considering these findings, microcrystalline cellulose-containing starch film is suggested as a biodegradable substitute for applications in food packaging.

Keywords

acid hydrolysis; biopolymer; cellulose powders; macroalgae; red seaweed

Full Text:

PDF

References

Ahmed, S., and Janaswamy, S., 2023. Strong and Biodegradable Films from Avocado Peel Fiber. Industrial Crops and Products, 201, 116926. https://doi.org/10.1016/j.indcrop.2023.116926.

Bangar, S.P., Dunno, K., Dhull, S.B., Kumar Siroha, A., Changan, S., Maqsood, S., and Rusu, A.V., 2022. Avocado Seed Discoveries: Chemical Composition, Biological Properties, and Industrial Food Applications. Food Chemistry: X, 16, 100507. https://doi.org/10.1016/j.fochx.2022.100507.

Bangar, S.P., Esua, O.J., Nickhil, C., and Whiteside, W.S., 2023. Microcrystalline Cellulose for Active Food Packaging Applications: A Review. Food Packaging and Shelf Life, 36, 101048. https://doi.org/10.1016/j.fpsl.2023.101048.

Bangar, S.P., and Whiteside, W.S., 2021. Nano-Cellulose Reinforced Starch Bio Composite Films- A Review on Green Composites. International Journal of Biological Macromolecules, 185, 849–860. https://doi.org/10.1016/j.ijbiomac.2021.07.017.

Bogolitsyn, K., Parshina, A., Aleshina, L., Prusskii, A., Tokko, O., Polomarchuk, D., Bogdanovich, N., and Savrasova, Y., 2024. Nanocrystalline Cellulose from Arctic Brown Algae Laminaria Digitata and Saccharina Latissima. Bioactive Carbohydrates and Dietary Fibre, 31, 100416. https://doi.org/10.1016/j.bcdf.2024.100416.

Chen, Y.W., Lee, H.V., Juan, J.C., and Phang, S.-M., 2016. Production of New Cellulose Nanomaterial from Red Algae Marine Biomass Gelidium Elegans. Carbohydrate Polymers, 151, 1210–1219. https://doi.org/10.1016/j.carbpol.2016.06.083.

de Vilhena, M.B., Paula, M.V. da S., de Oliveira, R.C., Estumano, D.C., Viegas, B.M., Rodrigues, E.C., Macêdo, E.N., Souza, J.A. da S., and Cunha, E.J. de S., 2024. Effect of Glycerol and Sisal Nanofiber Content on the Tensile Properties of Corn Starch/Sisal Nanofiber Films. Polymers, 16, 1947. https://doi.org/10.3390/polym16131947.

El Achaby, M., Kassab, Z., Aboulkas, A., Gaillard, C., and Barakat, A., 2018. Reuse of Red Algae Waste for the Production of Cellulose Nanocrystals and Its Application in Polymer Nanocomposites. International Journal of Biological Macromolecules, 106, 681–691. https://doi.org/10.1016/j.ijbiomac.2017.08.067.

El Miri, N., Abdelouahdi, K., Zahouily, M., Fihri, A., Barakat, A., Solhy, A., and El Achaby, M., 2015. Bio‐nanocomposite Films Based on Cellulose Nanocrystals Filled Polyvinyl Alcohol/Chitosan Polymer Blend. Journal of Applied Polymer Science, 132. https://doi.org/10.1002/app.42004.

Fu, J., Zhou, Y., Xie, H., Duan, Q., Yang, Y., Liu, H., and Yu, L., 2024. From Macro- to Nano- Scales: Effect of Fibrillary Celluloses from Okara on Performance of Edible Starch Film. International Journal of Biological Macromolecules, 262, 129837. https://doi.org/10.1016/j.ijbiomac.2024.129837.

Grisales-Mejía, J.F., Martínez-Correa, H.A., and Andrade-Mahecha, M.M., 2024. Biodegradable and Antioxidant Films with Barrier Properties to Visible and Ultraviolet Light Using Hass Avocado (Persea Americana Mill.) by-Products. Food and Bioproducts Processing, 148, 154–164. https://doi.org/10.1016/j.fbp.2024.09.001.

Guzman-Puyol, S., Benítez, J.J., and Heredia-Guerrero, J.A., 2022a. Transparency of Polymeric Food Packaging Materials. Food Research International, 161, 111792. https://doi.org/10.1016/j.foodres.2022.111792.

Guzman-Puyol, S., Hierrezuelo, J., Benítez, J.J., Tedeschi, G., Porras-Vázquez, J.M., Heredia, A., Athanassiou, A., Romero, D., and Heredia-Guerrero, J.A., 2022b. Transparent, UV-Blocking, and High Barrier Cellulose-Based Bioplastics with Naringin as Active Food Packaging Materials. International Journal of Biological Macromolecules, 209, 1985–1994. https://doi.org/10.1016/j.ijbiomac.2022.04.177.

Lei, Y., Mao, L., Yao, J., and Zhu, H., 2021. Improved Mechanical, Antibacterial and UV Barrier Properties of Catechol-Functionalized Chitosan/Polyvinyl Alcohol Biodegradable Composites for Active Food Packaging. Carbohydrate Polymers, 264, 117997. https://doi.org/10.1016/j.carbpol.2021.117997.

Lubis, M., Harahap, M.B., Ginting, M.H.S., Sartika, M., and Azmi, H., 2018. Production of Bioplastic from Avocado Seed Starch Reinforced with Microcrystalline Cellulose from Sugar Palm Fibers. Journal of Engineering Science and Technology, 13, 381–393.

Martins, S.H.F., Pontes, K.V., Fialho, R.L., and Fakhouri, F.M., 2022. Extraction and Characterization of the Starch Present in the Avocado Seed (Persea Americana Mill) for Future Applications. Journal of Agriculture and Food Research, 8, 100303. https://doi.org/10.1016/j.jafr.2022.100303.

Meral, H., and Demirdöven, A., 2025. Extraction and Characterization of Microcrystalline Cellulose from Carrot Pomace Using Green Pretreatment Technologies. Food Chemistry, 468, 142429. https://doi.org/10.1016/j.foodchem.2024.142429.

Merino, D., Bertolacci, L., Paul, U.C., Simonutti, R., and Athanassiou, A., 2021. Avocado Peels and Seeds: Processing Strategies for the Development of Highly Antioxidant Bioplastic Films. ACS Applied Materials & Interfaces, 13, 38688–38699. https://doi.org/10.1021/acsami.1c09433.

Ningrum, R.S., Sondari, D., Purnomo, D., Amanda, P., Burhani, D., and Rodhibilah, F.I., 2021. Karakteristik Edible Film dari Pati Sagu Alami dan Termodifikasi. Jurnal Kimia dan Kemasan, 43, 95. https://doi.org/10.24817/jkk.v43i2.6963.

Park, S.-Y., Kim, H.-L., and Her, J.-Y., 2024. Isolation of Microcrystalline Cellulose (MCC) from Pistachio Shells and Preparation of Carrageenan-Based Composite Films. Carbohydrate Polymer Technologies and Applications, 7, 100423. https://doi.org/10.1016/j.carpta.2024.100423.

Tan, X.Y., Abd Hamid, S.B., and Lai, C.W., 2015. Preparation of High Crystallinity Cellulose Nanocrystals (CNCs) by Ionic Liquid Solvolysis. Biomass and Bioenergy, 81, 584–591. https://doi.org/10.1016/j.biombioe.2015.08.016.

Trache, D., Hussin, M.H., Hui Chuin, C.T., Sabar, S., Fazita, M.R.N., Taiwo, O.F.A., Hassan, T.M., and Haafiz, M.K.M., 2016. Microcrystalline Cellulose: Isolation, Characterization and Bio-Composites Application—A Review. International Journal of Biological Macromolecules, 93, 789–804. https://doi.org/10.1016/j.ijbiomac.2016.09.056.

Zhao, T., Chen, Z., Lin, X., Ren, Z., Li, B., and Zhang, Y., 2018. Preparation and Characterization of Microcrystalline Cellulose (MCC) from Tea Waste. Carbohydrate Polymers, 184, 164–170. https://doi.org/10.1016/j.carbpol.2017.12.024.

Refbacks

  • There are currently no refbacks.