Sintesis Karbon Aktif dari Tongkol Jagung (Zea mays L.) dengan Metoda Dehidrasi sebagai Elektroda Superkapasitor

Olly Norita Tetra, Raihan Hanif Aulia, Deswati Deswati

Abstract

Karbon aktif dari limbah tongkol jagung (Zea mays L.) telah disintesis dengan metoda dehidrasi untuk digunakan sebagai bahan elektroda superkapasitor. Bubuk tongkol jagung didehidrasi dengan H2SO4 1 M dan diaktivasi dengan KOH 5 M pada perbandingan massa karbon dan aktivator 1:2,5, dilanjutkan dengan karbonisasi pada 400 °C selama 1 jam. Hasil karakterisasi SEM menunjukkan terjadinya pembentukan pori pada permukaan karbon aktif dan hasil EDX memberikan persentase karbon 76,99%. Berdasarkan metode isoterm adsorpsi-desorpsi menunjukkan tipe isoterm IV dan histerisis tipe H3 yang menunjukkan struktur karbon aktif adalah mesopori, dengan luas permukaan spesifik 43,176 m2/g, volume pori 0,0855 cm3/g, dan distribusi pori rata-rata adalah 3,96 nm. Pengukuran sifat elektrokimia dari karbon aktif memberikan kemampuan untuk menyimpan energi dengan nilai kapasitansi spesifik sebesar 247,53 F/g dan rapat energi adalah 123,03 Wh/kg. Hasil EIS didapatkan kurva setengah lingkaran dari plot Nyquist yang menunjukkan adanya tahanan kecil untuk transfer muatan. Sintesis karbon aktif dengan metoda dehidrasi dan aktivasi menawarkan keuntungan seperti biaya rendah, proses preparasi sederhana, dan waktu sintesis singkat dengan kinerja elektrokimia yang tinggi untuk superkapasitor.

Synthesis of Activated Carbon From Corncob (Zea mays L.) by Dehydration Method for Supercapacitor Electrode. Activated carbon from corn cob waste (Zea mays L.) has been synthesized using a dehydration method as a supercapacitor electrode material. Corn cob powder was dehydrated with 1 M H2SO4 and activated with 5 M KOH at a mass ratio of carbon and activator of 1:2.5, followed by carbonization at 400 °C for 1 hour. SEM characterization showed pore formation on the surface of activated carbon, and EDX results gave a carbon percentage of 76.99%. Based on the adsorption-desorption isotherm method, the isotherm type IV and hysteresis type H3 showed that the structure of activated carbon is mesoporous, with a specific surface area of 43.176 m2/g, a pore volume of 0.0855 cm3/g, and an average pore distribution of 3.96 nm. Measurement of the electrochemical properties of activated carbon provides the ability to store energy with a specific capacitance value of 247.53 F/g, and the energy density is 123.03 Wh/kg. EIS results obtained semicircular curves of Nyquist plots, indicating a slight resistance to charge transfer. The synthesis of activated carbon by the dehydration and activation method offers advantages such as low cost, simple preparation process, and short synthesis time with high electrochemical performance for supercapacitors.

Keywords

activation; dehydration; capacitance; activated carbon; corn cob; supercapacitor

Full Text:

PDF

References

Barkauskas, J. and Dervinyte, M., 2003. An Investigation of the Functional Groups on the Surface of Activated Carbons. Journal of the Serbian Chemical Society, 69, 363–375.

Daud, Z., Zainuri, M., Hatta, M., Sari, A., Kassim, M., Awang, H., and Aripin, A.M., 2013. Analysis the Chemical Composition and Fiber Morphology Structure of Corn Stalk. Australian Journal of Basic and Applied Sciences, 7, 401–405.

Elanthamilan, E., Catherin Meena, B., Renuka, N., Santhiya, M., George, J., Kanimozhi, E.P., Christy Ezhilarasi, J., and Princy Merlin, J., 2021. Walnut Shell Derived Mesoporous Activated Carbon for High Performance Electrical Double Layer Capacitors. Journal of Electroanalytical Chemistry, 901, 115762. https://doi.org/10.1016/j.jelechem.2021.115762.

Fu, F., Yang, D., Fan, Y., Qiu, X., Huang, J., Li, Z., and Zhang, W., 2022. Nitrogen-Rich Accordion-like Lignin Porous Carbon via Confined Self-Assembly Template and in-Situ Mild Activation Strategy for High-Performance Supercapacitors. Journal of Colloid and Interface Science, 628, 90–99. https://doi.org/10.1016/j.jcis.2022.07.070.

Gunawan, S., Hasan, H., and Lubis, R.D.W., 2020. Pemanfaatan Adsorben dari Tongkol Jagung sebagai Karbon Aktif untuk Mengurangi Emisi Gas Buang Kendaraan Bermotor. Jurnal Rekayasa Material, Manufaktur dan Energi, 3, 38–47. https://doi.org/10.30596/rmme.v3i1.4527.

Karakehya, N., 2023. Effects of One-Step and Two-Step KOH Activation Method on the Properties and Supercapacitor Performance of Highly Porous Activated Carbons Prepared from Lycopodium Clavatum Spores. Diamond and Related Materials, 135. https://doi.org/10.1016/j.diamond.2023.109873.

Li, Y., Zhang, D., Zhang, Y., He, J., Wang, Yulin, Wang, K., Xu, Y., Li, H., and Wang, Yi, 2020. Biomass-Derived Microporous Carbon with Large Micropore Size for High-Performance Supercapacitors. Journal of Power Sources, 448, 227396. https://doi.org/10.1016/j.jpowsour.2019.227396.

Liu, H., Yang, M., Li, J., Chen, Y., Liu, Q., and Gu, J., 2024. Polyacrylonitrile as a Binder Realizes High-Rate Activated-Carbon-Based Supercapacitors. Electrochimica Acta, 500, 144754. https://doi.org/10.1016/j.electacta.2024.144754.

Marsh, H., and Rodriguez-Reinoso, F., 2006. Activated Carbon. Elsevier. https://doi.org/10.1016/B978-0-08-044463-5.X5013-4.

Nasser, R., Tiantian, J., and Song, J.-M., 2022. Hierarchical Porous Activated Carbon Derived from Olives: Preparation, (N, S) Co-Doping, and Its Application in Supercapacitors. Journal of Energy Storage, 51, 104348. https://doi.org/10.1016/j.est.2022.104348.

Prayogatama, A., Nuryoto, N., and Kurniawan, T., 2022. Modifikasi Karbon Aktif dengan Aktivasi Kimia dan Fisika Menjadi Elektroda Superkapasitor. JST (Jurnal Sains dan Teknologi), 11, 47–58.

Shaku, B., Mofokeng, T.P., Coville, N.J., Ozoemena, K.I., and Maubane-Nkadimeng, M.S., 2023. Biomass Valorisation of Marula Nutshell Waste into Nitrogen-Doped Activated Carbon for Use in High Performance Supercapacitors. Electrochimica Acta, 442, 141828. https://doi.org/10.1016/j.electacta.2023.141828.

Song, M., Zhou, Y., Ren, X., Wan, J., Du, Y., Wu, G., and Ma, F., 2019. Biowaste-Based Porous Carbon for Supercapacitor: The Influence of Preparation Processes on Structure and Performance. Journal of Colloid and Interface Science, 535, 276–286. https://doi.org/10.1016/j.jcis.2018.09.055.

Su, X.-L., Chen, J.-R., Zheng, G.-P., Yang, J.-H., Guan, X.-X., Liu, P., and Zheng, X.-C., 2018. Three-Dimensional Porous Activated Carbon Derived from Loofah Sponge Biomass for Supercapacitor Applications. Applied Surface Science, 436, 327–336. https://doi.org/10.1016/j.apsusc.2017.11.249.

Taer, E., Taslim, R., Putri, A. W., Apriwandi, A., and Agustino, A., 2018. Activated Carbon Electrode made from Coconut Husk Waste for Supercapacitor Application. International Journal of Electrochemical Science, 13, 12072–12084. https://doi.org/10.20964/2018.12.19.

Tetra, O.N., Aziz, H., Arifin, B., and Deswati, 2024a. Karbon Aktif Berpori dari Kulit Jeruk (Citrus sinensis (L.) Osbeck) Melalui Metoda Dehidrasi untuk Kapasitor Elektrokimia. Jurnal Zarah, 12, 25–32. https://doi.org/10.31629/zarah.v12i1.6049.

Tetra, O.N., Emriadi, E., Sukari, S., Sontani, A., and Aziz, H., 2024b. Preparation of Activated Carbon from Corn Stalks by Dehydration Method as Supercapacitor Electrode Material. Iranian Journal of Cheimstry and Chemical Engineering, 43, 4348–4359.

Tetra, O.N., Syukri, S., Santoni, A., Deswati, D., Fajarandi, N., and Emriadi, E., 2024c. Sintesis Karbon Aktif dari Batang Jagung (Zea mays L.) dengan Metoda Dehidrasi Asam untuk Aplikasi Elektroda Superkapasitor. Jurnal Fisika Unand, 13, 834–842. https://doi.org/10.25077/jfu.13.6.834-842.2024.

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., 2015. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87. https://doi.org/10.1515/pac-2014-1117.

Ukkakimapan, P., Sattayarut, V., Wanchaem, T., Yordsri, V., Phonyiem, M., Ichikawa, S., Obata, M., Fujishige, M., Takeuchi, K., Wongwiriyapan, W., and Endo, M., 2020. Preparation of Activated Carbon via Acidic Dehydration of Durian Husk for Supercapacitor Applications. Diamond and Related Materials, 107, 107906. https://doi.org/10.1016/j.diamond.2020.107906.

Vinayagam, M., Suresh Babu, R., Sivasamy, A., and Ferreira de Barros, A.L., 2020. Biomass-Derived Porous Activated Carbon from Syzygium Cumini Fruit Shells and Chrysopogon Zizanioides Roots for High-Energy Density Symmetric Supercapacitors. Biomass and Bioenergy, 143, 105838. https://doi.org/10.1016/j.biombioe.2020.105838.

Wang, B., Li, L., Zhao, Chunhua, and Zhao, Chongjun, 2021. Microporous Active Carbon with Ultrahigh Surface Area from Metaplexis Japonica for High-Performance Supercapacitor. Diamond and Related Materials, 118, 108484. https://doi.org/10.1016/j.diamond.2021.108484.

Wang, H., Guo, W., Liu, B., Wu, Q., Luo, H., Zhao, Q., Si, Q., Sseguya, F., and Ren, N., 2019. Edge-Nitrogenated Biochar for Efficient Peroxydisulfate Activation: An Electron Transfer Mechanism. Water Research, 160, 405–414. https://doi.org/10.1016/j.watres.2019.05.059.

Yin, Q., Li, X., Yong, X., Sha, P., Zhang, Q., Dong, H., Sui, J., Yu, J., Yu, L., and Dong, L., 2023. An Environmentally Friendly Process to Derive N/O/S-Codoped Porous Carbon from Biomass Waste with High Yield for High Performance Supercapacitor. Diamond and Related Materials, 134, 109798. https://doi.org/10.1016/j.diamond.2023.109798.

Yu, K., Zhu, H., Qi, H., and Liang, C., 2018. High Surface Area Carbon Materials Derived from Corn Stalk Core as Electrode for Supercapacitor. Diamond and Related Materials, 88, 18–22. https://doi.org/10.1016/j.diamond.2018.06.018.

Zhu, W., Shen, D., and Xie, H., 2023. Combination of Chemical Activation and Nitrogen Doping toward Hierarchical Porous Carbon from Houttuynia Cordata for Supercapacitors. Journal of Energy Storage, 60, 106595. https://doi.org/10.1016/j.est.2022.106595.

Refbacks

  • There are currently no refbacks.