Efisiensi Degradasi Limbah Methylene Blue Menggunakan Sintesis Hijau Fotokatalis ZnO Ekstrak Nanas dan Karbon Aktif Sekam Padi
Abstract
Pencemaran air akibat limbah zat warna seperti methylene blue (MB) merupakan masalah lingkungan yang serius di Indonesia. MB banyak digunakan dalam industri tekstil, kosmetik, dan farmasi, dapat menurunkan kualitas air serta menimbulkan dampak negatif terhadap kesehatan manusia dan ekosistem. Fotokatalisis berbasis ZnO merupakan metode yang menjanjikan untuk mendekontaminasi air, namun keterbatasan penyerapan cahaya mengurangi efektivitasnya. Penelitian ini mengeksplorasi sintesis hijau ZnO menggunakan ekstrak nanas melalui metode presipitasi, dengan tujuan meningkatkan karakteristik dan aktivitas fotokatalitik. Selain itu, ZnO dikombinasikan dengan karbon aktif (KA) dari sekam padi dengan metode impregnasi untuk meningkatkan kinerjanya. Karakterisasi fotokatalis dilakukan menggunakan XRD, FTIR, dan BET untuk mengevaluasi sifat kristalinitas, gugus fungsi, dan luas permukaan material. Hasil XRD menunjukkan ZnO memiliki struktur wurtzit heksagonal dengan ukuran kristal 27,01 nm, sedangkan ZnO/KA memiliki ukuran 20,24 nm dengan struktur wurtzit heksagonal untuk ZnO dan struktur grafit untuk karbon. Hasil FTIR mengonfirmasi keberadaan ikatan Zn–O, C–H, dan O–H, sedangkan hasil BET menunjukkan bahwa ZnO/KA memiliki kurva distribusi pori tipe II dengan pori makro. Penelitian ini menunjukkan bahwa penambahan karbon aktif secara signifikan meningkatkan efisiensi fotodegradasi MB pada berbagai pH, dengan ZnO/karbon aktif (3:1) (b/b) mencapai kinerja tertinggi, mengurangi kadar MB hingga 99,81% pada pH 8.
Degradation Efficiency of Methylene Blue Using Green-Synthesized ZnO Photocatalyst with Pineapple Extract and Rice Husk-Derived Activated Carbon. Water pollution caused by dye waste, such as methylene blue (MB), is a serious environmental issue in Indonesia. Widely used in the textile, cosmetic, and pharmaceutical industries, can degrade water quality and negatively impact human health and ecosystems. ZnO based photocatalysis is a promising method for water decontamination, but its limited light absorption reduces efficiency. This study explores the green synthesis of ZnO using pineapple extract via precipitation method to enhance its characteristics and photocatalytic activity. Additionally, ZnO was combined with activated carbon (AC) derived from rice husks through an impregnation to improve performance further. XRD, FTIR, and BET characterization confirmed the crystallinity, functional groups, and surface area properties. XRD analysis showed a hexagonal wurtzite structure for ZnO with a crystal size of 27.01 nm, while ZnO/AC had a size of 20.24 nm with both wurtzite and graphite structures. FTIR results verified Zn–O, C–H, and O–H bonds, and BET analysis indicated a type II macroporous distribution. Photodegradation tests revealed that ZnO/AC (3:1) (w/w) achieved the highest efficiency, reducing MB concentration by 99.81% at pH 8. These findings demonstrate that activated carbon significantly enhances the photocatalytic performance of ZnO, offering a sustainable approach for dye wastewater treatment.
Keywords
References
An, G.W., Mahadik, M.A., Chae, W.-S., Kim, H.G., Cho, M., and Jang, J.S., 2018. Enhanced Solar Photoelectrochemical Conversion Efficiency of the Hydrothermally-Deposited TiO2 Nanorod Arrays: Effects of the Light Trapping and Optimum Charge Transfer. Applied Surface Science, 440, 688–699. https://doi.org/10.1016/j.apsusc.2018.01.194.
Ayu, G., Saraswati, A., Diantariani, N.P., and Suarya, D.P., 2015. Fotodegradasi Zat Warna Tekstil Congo Red dengan Fotokatalisis ZnO-Arang Aktif dan Sinar Ultraviolet (UV). Jurnal Kimia, 9.
Naghani, M.E., Neghabi, M., Zadsar, M., and Abbastabar Ahangar, H., 2023. Synthesis and Characterization of Linear/Nonlinear Optical Properties of Graphene Oxide and Reduced Graphene Oxide-Based Zinc Oxide Nanocomposite. Scientific Reports, 13. https://doi.org/10.1038/s41598-023-28307-7.
Elina, R., Cintya Rori, D., Ardi, and Khair, M., 2023. Karakterisasi FTIR Pada Karbon Aktif Terimpregnasi ZnO. Jurnal Pendidikan Tambusai, 7.
Fanani, N., and Ulfindrayani, I.F., 2019. Synthesis of Activated Carbon (AC) from Bamboo Waste as A Support of Zinc Oxide (ZnO) Catalyst. Konversi, 8, 108–112. https://doi.org/10.20527/k.v8i2.7183.
Fard, N.E., Fazaeli, R., and Ghiasi, R., 2016. Band Gap Energies and Photocatalytic Properties of CdS and Ag/CdS Nanoparticles for Azo Dye Degradation. Chemical Engineering and Technology, 39. https://doi.org/10.1002/ceat.201500116.
Fathy, N., Fathy, S., Ali, F., and Mousa, S., 2024. Effective Sunlight Photodegradation of Methylene Blue Dye Using Zinc Oxide Doped with Mono- and Bi-Metals of Ag and Ce. Desalination and Water Treatment, 320, 100595. https://doi.org/10.1016/j.dwt.2024.100595.
Garmini, R., and Zairinayati, Z., 2022. Penurunan Kadar Fosfat Limbah Cair Usaha Laundry dengan Karbon Aktif Sekam Padi. Jurnal Delima Harapan, 9, 71–76. https://doi.org/10.31935/delima.v9i1.152.
Geng, Z., Chen, X., Yang, W., Guo, Q., Xu, C., Dai, D., and Yang, X., 2016. Highly Efficient Water Dissociation on Anatase TiO 2 (101). The Journal of Physical Chemistry C, 120, 26807–26813. https://doi.org/10.1021/acs.jpcc.6b07774.
Goudjil, M.B., Dali, H., Zighmi, S., Mahcene, Z., and Bencheikh, S.E., 2024. Photocatalytic Degradation of Methylene Blue Dye with Biosynthesized Hematite α-Fe2O3 Nanoparticles under UV-Irradiation. Desalination and Water Treatment, 317, 100079. https://doi.org/10.1016/j.dwt.2024.100079.
Han, J., and Liu, Z., 2021. Optimization and Modulation Strategies of Zinc Oxide-Based Photoanodes for Highly Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 4, 1004–1013. https://doi.org/10.1021/acsaem.0c02985.
Kamaraj, M., Srinivasan, N.R., Assefa, G., Adugna, A.T., and Kebede, M., 2020. Facile Development of Sunlit ZnO Nanoparticles-Activated Carbon Hybrid from Pernicious Weed as an Operative Nano-Adsorbent for Removal of Methylene Blue and Chromium from Aqueous Solution: Extended Application in Tannery Industrial Wastewater. Environmental Technology & Innovation, 17, 100540. https://doi.org/10.1016/j.eti.2019.100540.
Kavan, L., 2024. Electrochemistry and Band Structure of Semiconductors (TiO2, SnO2, ZnO): Avoiding Pitfalls and Textbook Errors. Journal of Solid State Electrochemistry, 28, 829–845. https://doi.org/10.1007/s10008-023-05770-w.
Khan, Idrees, Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., Shah, T., and Khan, Ibrahim, 2022. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water (Switzerland), 14, 242. https://doi.org/10.3390/w14020242.
Licona–Aguilar, A.I., Torres–Huerta, A.M., Domínguez–Crespo, M.A., Negrete–Rodríguez, M.L.X., Conde–Barajas, E., Brachetti–Sibaja, S.B., and Rodríguez–Salazar, A.E., 2024. Valorization of Agroindustrial Orange Peel Waste during the Optimization of Activated Carbon–Multiwalled Carbon Nanotubes–Zinc Oxide Composites Used in the Removal of Methylene Blue in Wastewater. Chemical Engineering Journal, 492, 152102. https://doi.org/10.1016/j.cej.2024.152102.
Loke, J.Y., Mohd Zaki, R.S., and Setiabudi, H.D., 2022. Photocatalytic Degradation of Methylene Blue Using ZnO Supported on Wood Waste-Derived Activated Carbon (ZnO/AC). Materials Today: Proceedings, 57. https://doi.org/10.1016/j.matpr.2021.12.535.
Machrouhi, A., Khiar, H., Elhalil, A., Sadiq, M., Abdennouri, M., and Barka, N., 2023. Synthesis, Characterization, and Photocatalytic Degradation of Anionic Dyes Using a Novel ZnO/Activated Carbon Composite. Watershed Ecology and the Environment, 5, 80–87. https://doi.org/10.1016/j.wsee.2022.12.001.
Maharani, D.K., and Nurisnaini, R., 2024. Nanopartikel TIO2 dari Ekstrak Daun Kemangi (Ocimum sanctum) untuk Degradasi Metilen Biru. Algoritma: Jurnal Matematika, Ilmu pengetahuan Alam, Kebumian dan Angkasa, 2, 57–66. https://doi.org/10.62383/algoritma.v2i3.59.
Mallick, S., Barik, D., and Pradhan, N., 2024. Commelina erecta, L. Biomass‑silver Nanoparticle Composite as a Heterogeneous Catalyst for Methylene Blue Degradation. Applied Catalysis O: Open, 192, 206939. https://doi.org/10.1016/j.apcato.2024.206939.
Mohamad, I.S., Ismail, S.S., Norizan, M.N., Murad, S.A.Z., and Abdullah, M.M.A., 2017. ZnO Photoanode Effect on the Efficiency Performance of Organic Based Dye Sensitized Solar Cell. IOP Conference Series: Materials Science and Engineering, 209, 012028. https://doi.org/10.1088/1757-899X/209/1/012028.
Nasrollahzadeh, M.S., Hadavifar, M., Ghasemi, S.S., and Arab Chamjangali, M., 2018. Synthesis of ZnO Nanostructure Using Activated Carbon for Photocatalytic Degradation of Methyl Orange from Aqueous Solutions. Applied Water Science, 8, 104. https://doi.org/10.1007/s13201-018-0750-6.
Nida, V., Saraswaty, V., Nissa, R.C., Endah, E.S., Ratnaningrum, D., Risdian, C., and Setiyanto, H., 2023. Antibacterial Potential of Zinc Oxide Nanoparticles Derived from Pineapple Peel Aqueous Extract. IOP Conference Series: Earth and Environmental Science, 1201, 012086. https://doi.org/10.1088/1755-1315/1201/1/012086.
Noorimotlagh, Z., Darvishi Cheshmeh Soltani, R., Shams Khorramabadi, Gh., Godini, H., and Almasian, M., 2016. Performance of Wastewater Sludge Modified with Zinc Oxide Nanoparticles in the Removal of Methylene Blue from Aqueous Solutions. Desalination and Water Treatment, 57, 1684–1692. https://doi.org/10.1080/19443994.2014.977954.
Nurullita, N., and Zainul, R., 2022. Pengaruh Pengadukan pada Degradasi Methylene Blue Menggunakan Katalis ZnO Terdoping Cu. Jurnal Periodic Jurusan Kimia UNP, 11. https://doi.org/10.24036/p.v11i3.115089.
Ong, C.B., Ng, L.Y., and Mohammad, A.W., 2018. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renewable and Sustainable Energy Reviews, 81, 536–551. https://doi.org/10.1016/j.rser.2017.08.020.
Peraturan Menteri Lingkungan Hidup dan Kehutanan Nomor 16 Tentang Baku Mutu Air Limbah, 2019. Kementerian Lingkungan Hidup dan Kehutanan. Jakarta.
Rabell, G.O., Alfaro Cruz, M.R., and Juárez-Ramírez, I., 2022. Photoelectrochemical (PEC) Analysis of ZnO/Al Photoelectrodes and Its Photocatalytic Activity for Hydrogen Production. International Journal of Hydrogen Energy, 47, 7770–7782. https://doi.org/10.1016/j.ijhydene.2021.12.107.
Rezky, A.N., and Fathonah, I.W., 2019. Optimasi Suhu Kalsinasi terhadap Sintesis Nanostruktur Zno sebagai Fotokatalis dengan Memanfaatkan Buah Nanas Sebagai Pengkelat, in: E-Proceeding of Engineering. pp. 5152–5159.
Rhamdiyah, F.K., and Maharani, D.K., 2022. Biosynthesis of ZnO Nanoparticles from Aqueous Extract of Moringa oleifera L.: Its Application as Antibacterial and Photocatalyst. Indonesian Journal of Chemical Science, 11. https://doi.org/10.15294/ijcs.v11i2.52498.
Rungsawang, T., Krobthong, S., Paengpan, K., Kaewtrakulchai, N., Manatura, K., Eiad-Ua, A., Boonruang, C., and Wongrerkdee, S., 2024. Synergy of Functionalized Activated Carbon and ZnO Nanoparticles for Enhancing Photocatalytic Degradation of Methylene Blue and Carbaryl. Radiation Physics and Chemistry, 223, 111924. https://doi.org/10.1016/j.radphyschem.2024.111924.
Saini, J., Garg, V.K., Gupta, R.K., and Kataria, N., 2017. Removal of Orange G and Rhodamine B Dyes from Aqueous System Using Hydrothermally Synthesized Zinc Oxide Loaded Activated Carbon (ZnO-AC). Journal of Environmental Chemical Engineering, 5, 884–892. https://doi.org/10.1016/j.jece.2017.01.012.
Selvaraj, S., Patrick D, S., Vangari, G.A., Mohan, M.K., S, P., and C, M., 2022. Facile Synthesis of Sm Doped ZnO Nanoflowers by Coprecipitation Method for Enhanced Photocatalytic Degradation of MB Dye under Sunlight Irradiation. Ceramics International, 48, 29049–29058. https://doi.org/10.1016/j.ceramint.2022.04.299.
Tiwana, P., Docampo, P., Johnston, M.B., Snaith, H.J., and Herz, L.M., 2011. Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells. ACS Nano, 5, 5158–5166. https://doi.org/10.1021/nn201243y.
Zhang, Y., Li, J., Tan, J., Li, W., Singh, B.P., Yang, X., Bolan, N., Chen, X., Xu, S., Bao, Y., Lv, D., Peng, A., Zhou, Y., and Wang, H., 2023. An Overview of the Direct and Indirect Effects of Acid Rain on Plants: Relationships among Acid Rain, Soil, Microorganisms, and Plants. Science of the Total Environment, 873, 162388. https://doi.org/10.1016/j.scitotenv.2023.162388.
Refbacks
- There are currently no refbacks.