Studi Pembuatan Bioplastik dari Pati Tapioka dengan Pektin Kulit Buah Naga (Hylocereus polyrhizus) dan Karagenan
Abstract
Penelitian ini bertujuan untuk membuat bioplastik berbasis pati tapioka dengan penambahan pektin dari limbah kulit buah naga (Hylocereus polyrhizus) dan karagenan. Penambahan kedua bahan tersebut untuk meningkatkan sifat fisika dan kimia bioplastik, termasuk ketebalan, opasitas, dan densitas. Uji ketebalan menunjukkan variasi antara 0,076 hingga 0,097 mm, dengan formulasi F2 yaitu bioplastik dengan variasi perbandingan karagenan 0,7 g dan pektin kulit buah naga 0,3 g memiliki ketebalan tertinggi. Pengujian opasitas memperlihatkan bahwa penambahan pektin cenderung meningkatkan opasitas, sementara karagenan menurunkannya. Nilai opasitas berkisar antara 3,020 hingga 5,976 mm⁻¹, dengan F0 memiliki nilai tertinggi. Densitas bioplastik berkisar antara 1,345 hingga 1,897 g/cm³, di mana formulasi F2 juga menunjukkan densitas tertinggi. Perolehan analisis statistik dari pengujian ANOVA bersamaan dengan Kruskal-Wallis menunjukkan bahwa penambahan pektin dan karagenan memiliki pengaruh signifikan (p < 0,05) terhadap ketiga parameter tersebut. Penelitian ini menampakkan bahwa kombinasi pektin dan karagenan efektif dalam memperbaiki sifat fisik dan optik bioplastik, menjadikannya kandidat yang potensial untuk aplikasi kemasan berkelanjutan.
Study on the Production of Bioplastic from Tapioca Starch with Dragon Fruit Peel Pectin (Hylocereus polyrhizus) and Carrageenan. This study aims to synthesize tapioca starch-based bioplastics by adding pectin from dragon fruit (Hylocereus polyrhizus), peel waste, and carrageenan. Adding both materials to improve bioplastics' physical and chemical properties, including thickness, opacity, and density. The thickness test showed a variation between 0.076 to 0.097 mm, with formulation F2 namely bioplastic with a variation in the ratio of carrageenan 0.7 g and dragon fruit skin pectin 0.3 g having the highest thickness. The opacity test showed that adding pectin tended to increase opacity, while carrageenan decreased it. The opacity values ranged from 3.020 to 5.976 mm⁻¹, with F0 having the highest value. The density of bioplastics ranged from 1.345 to 1.897 g/cm³, where formulation F2 also showed the highest density. The statistical analysis results using the ANOVA and Kruskal-Wallis tests showed that adding pectin and carrageenan significantly (p < 0.05) affected the three parameters. This study shows that the combination of pectin and carrageenan effectively improves the physical and optical properties of bioplastics, making them potential candidates for sustainable packaging applications.
Keywords
Full Text:
PDFReferences
Adhitama, R., Setiawan, J.V., Sukweenadhi, J., Goeltom, M.T., 2023. Utilization of Breadfruit (Artocarpus altilis) Peel Waste and Blood Clam Shell Waste (Anadara granosa) as Raw Materials for Glycerol-Plasticized Degradable Bioplastic Production. Indonesian Journal of Biotechnology and Biodiversity, 7, 12–21. https://doi.org/10.47007/ijobb.v7i1.167.
Arooj, A., 2023. Starch/Pectin as Emerging Renewable Materials for Fabrication of Sustainable Bioplastics for Food Packaging Applications. Research Square, 1–17. https://doi.org/10.21203/rs.3.rs-3160443/v1.
Chang, Y., McLandsborough, L., McClements, D.J., 2012. Cationic Antimicrobial (Ε-Polylysine)–Anionic Polysaccharide (Pectin) Interactions: Influence of Polymer Charge on Physical Stability and Antimicrobial Efficacy. Journal of Agricultural and Food Chemistry, 60, 1837–1844. https://doi.org/10.1021/jf204384s.
Cinar, S.Ö., Chong, Z.K., Küçüker, M.A., Wieczorek, N., Cengiz, U., Kuchta, K., 2020. Bioplastic Production From Microalgae: A Review. International Journal of Environmental Research and Public Health, 17, 3842. https://doi.org/10.3390/ijerph17113842.
Dzaky, M., Sulmartiwi, L., Pujiastuti, D.Y., 2022. Application of Modified Starch on Bioplastic Spoon Based Carrageenan from Eucheuma cottonii on Biodegradability and Water Resistance. Journal of Marine and Coastal Science, 11, 40–48. https://doi.org/10.20473/jmcs.v11i2.30488.
Elkaliny, N.E., 2024. Macroalgae Bioplastics: A Sustainable Shift to Mitigate the Ecological Impact of Petroleum-Based Plastics. Polymers, 16, 1246. https://doi.org/10.3390/polym16091246.
Faradilla, R.F., 2023. Pengaruh Formulasi Kitosan Udang Windu dan Karagenan Terhadap Sifat Bioplastik dengan Pemlastis Polietilen Glikol. Journal Sains dan Inovasi Perikanan, 7, 50–62. https://doi.org/10.33772/jsipi.v7i1.214.
Favian, E., 2023. Effect of carrageenan addition on the characteristic of chitosan-based bioplastic. IOP Conference Series Earth and Environmental Science, 1289, 012039. doi: https://doi.org/10.1088/1755-1315/1289/1/012039.
Hanry, E.L., Surugau, N., 2023. Optimization of Biomass-to-Water Ratio and Glycerol Content to Develop Bioplastics from Whole Seaweed, Kappaphycus alvarezii. Research Square, 1-17. https://doi.org/10.21203/rs.3.rs-2757261/v1.
Henao-Díaz, L.S., Cadena-Casanova, C.L., López, G.I.B., Véleva, L., Azamar-Barrios, J.A., Hernández-Villegas, M.M., Córdova-Sánchez, S., 2021. Obtaining and Characterization Films of a Bioplastic Obtained from Passion Fruit Waste (Passiflora edulis). Agro Productividad, 14, 1–9. https://doi.org/10.32854/agrop.v14i7.2010.
Hidayat, F., Syaubari, S., Salima, R., 2020. Pemanfaatan pati tapioka dan kitosan dalam pembuatan plastik biodegradable dengan penambahan gliserol sebagai plasticizer. Jurnal Litbang Industri, 10, 33–38. https://doi.org/10.24960/jli.v10i1.5970.33-38.
Imoisili, P.E., Jen, T.-C., 2023. Synthesis and characterization of bioplastic films from potato peel starch; effect of glycerol as plasticizer. Materials Today: Proceedings, 105:1–5. doi: https://doi.org/10.1016/j.matpr.2023.05.565.
Khairuddin, N., 2023. Physico-Chemical Characteristics of Crosslinked-Biofilm Made From Passiflora Edulis Waste. Malaysian Applied Biology, 52, 29–34. https://doi.org/10.55230/mabjournal.v52i5.cp18.
Kitir, N., Yildirim, E., Şahin, Ü., Turan, M., Ekinci, M., Ors, S., Kul, R., Ünlü, Hüsnü, Ünlü, Halime, 2018. Peat Use in Horticulture. Peat. InTech (Chapter 5). https://doi.org/10.5772/intechopen.79171.
Kurniawan, M.F., Adenia, Z., 2022. Ekstraksi Pektin Kulit Buah Naga Merah (Hylocereus polyrhizus) dengan Pelarut Asam Sitrat dan Aplikasinya sebagai Polimer Plastik Biodegradable. Al-Kimiya, 9, 10–18. https://doi.org/10.15575/ak.v9i1.17425.
Listyarini, R.V., Susilawati, P.R., Nukung, E.N., Yua, M.A.T., 2020. Bioplastic From Pectin of Dragon Fruit (Hylocereus polyrhizus) Peel. Jurnal Kimia Sains dan Aplikasi, 23, 203–208. https://doi.org/10.14710/jksa.23.6.203-208.
Marlina, L., Indriani, R., Wulandari, R.R., Kimia, T., 2023. Pemanfaatan Limbah Kulit Buah Naga Super Merah (Hylocereus polyhizus) Menjadi Permen Jelly dengan Variasi Rasa Jahe Merah (Zingiber officinale Var.Rubrum). TEDC Jurnal Ilmiah Berkala, 17, 93–102.
Mellinas, C., Ramos, M., Jiménez, A., Garrigós, M.C., 2020. Recent Trends in the Use of Pectin from Agro-Waste Residues as a Natural-Based Biopolymer for Food Packaging Applications. Materials, 13, 673. https://doi.org/10.3390/ma13030673.
Merino, D., Bertolacci, L., Paul, U.C., Simonutti, R., Athanassiou, A., 2021. Avocado Peels and Seeds: Processing Strategies for the Development of Highly Antioxidant Bioplastic Films. ACS Applied Materials & Interfaces, 13, 38688–38699. https://doi.org/10.1021/acsami.1c09433.
Navasingh, R.J.H., 2023. Sustainable Bioplastics for Food Packaging Produced from Renewable Natural Sources. Polymers, 15, 3760. https://doi.org/10.3390/polym15183760.
Fadzillah, N.A., Othman, R., Hassan, N.M., Muhammad, N.W.F., Bakar, A.E.A., Noh, N.H., Mahmad, N., 2019. Hot Acid Extraction, Characterisation and Scavenging Activity of Pectin from Hylocereus polyrhizus. Journal of Pharmacy and Nutrition Sciences, 9, 276–282. https://doi.org/10.29169/1927-5951.2019.09.05.6.
Oliveira, J., Almeida, P.L., Lourenço, N.D., Gaudêncio, S.P., 2022. Marine-Derived Actinomycetes: Biodegradation of Plastics and Formation of PHA Bioplastics—A Circular Bioeconomy Approach. Marine Drugs, 20, 760. https://doi.org/10.3390/md20120760.
Oluwasina, Olugbenga O., Olaleye, F.K., Olusegun, S.J., Oluwasina, Olayinka O., Mohallem, N.D.S., 2019. Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. International Journal of Biological Macromolecules, 135, 282–293. https://doi.org/10.1016/j.ijbiomac.2019.05.150.
Pokhrel, S., Limbu, S.K., Subedi, S., 2022. Jackfruit Starch Based Blends Wwth Polyvinylpyrrolidone: Preparation, Structural Characterization, and Biodegradable Properties. Macromolecular Symposia, 403. https://doi.org/10.1002/masy.202200063.
Pradana, G.W., Jacoeb, A.M., Suwandi, R., 2017. Karakteristik Tepung Pati dan Pektin Buah Pepada Serta Aplikasinya Sebagai Bahan Baku Pembuatan Edible Film. Jurnal Pengolahan Hasil Perikanan Indonesia, 20, 609–619. https://doi.org/10.17844/jphpi.v20i3.19818.
Priyanto, A., Hendrawati, T.Y., 2018. Pengaruh kecepatan sentrifugasi terhadap karakteristik ekstrak aloe chinensis baker. Prosiding Seminar Nasional Sains dan Teknologi, 17 Oktober 2018, Universitas Muhamadiyah Jakarta, Indonesia, pp. 1–8.
Przybyszewska, A., Barbosa, C.H., Pires, F., Pires, J.R.A., Rodrigues, C., Galus, S., Alves, M.M., Santos, C., Coelhoso, I.M., Ana Luísa Almaça da Cruz Fernando, 2023. Packaging of Fresh Poultry Meat with Innovative and Sustainable ZnO/Pectin Bionanocomposite Films—A Contribution to the Bio and Circular Economy. Coatings, 13, 1208. https://doi.org/10.3390/coatings13071208.
Rizal, S., Alfatah, T., H. P. S. Abdul Khalil, Yahya, E.B., Abdullah, C.K., Mistar, E.M., Ikramullah, I., Kurniawan, R., Bairwan, R., 2022. Enhanced Functional Properties of Bioplastic Films Using Lignin Nanoparticles from Oil Palm-Processing Residue. Polymers, 14, 5126. https://doi.org/10.3390/polym14235126.
Santana, I., 2024. Seaweed as Basis of Eco-Sustainable Plastic Materials: Focus on Alginate. Polymers, 16, 1662. https://doi.org/10.3390/polym16121662.
Tien, N.N.T., Nguyen, H.T., Le, N.L., Khoi, T.T., Richel, A., 2023. Biodegradable films from dragon fruit (Hylocereus polyrhizus) peel pectin and potato starches crosslinked with glutaraldehyde. Food Packaging and Shelf Life, 37, 101084. https://doi.org/10.1016/j.fpsl.2023.101084.
Wortman, S.E., Kadoma, I., Crandall, M., 2016. Biodegradable Plastic and Fabric Mulch Performance in Field and High Tunnel Cucumber Production. Horttechnology, 26, 148–155. https://doi.org/10.21273/horttech.26.2.148.
Wullandari, P., Sedayu, B.B., Novianto, T.D., Prasetyo, A.W., 2021. Characteristic of semi refined and refined carrageenan flours used in the making of biofilm (bioplastic). IOP Conference Series: Earth and Environmental Science, 733, 012112. doi: https://doi.org/10.1088/1755-1315/733/1/012112.
Refbacks
- There are currently no refbacks.