The Characterization of Capsule Shell from Acid-Hydrolyzed Palm Oil Starch
Abstract
Acid hydrolysis of palm trunk starch can increase the amylose content in starch, providing a stronger and more stable film. This study aims to obtain the best-modified starch concentration ratio with hydroxypropyl methylcellulose (HPMC) and identify their characteristics. Modifying palm trunk starch was conducted with an acetic buffer using CH3COONa and CH3COOH, decolorizing starch with activated carbon. Manufacturing a capsule shell was performed with weight ratio variations of modified starch and HPMC 1:1 (F1), 2:1 (F2), and 3:1 (F3). All formulations produced firm and elastic capsule shells. The capsule products were consistent in an average weight of F1 (0.10 g), F2 (0.11 g), and F3 (0.14 g). The average disintegration test results were F1 (10 minutes, 27.57 seconds), F2 (6 minutes, 47.06 seconds), and F3 (4 minutes, 34.24 seconds). Tensile strength results were F1 (2.147 MPa), F2 (2.565 MPa), and F3 (2.159 MPa). Fourier Transform Infrared (FTIR) results showed a vibration at a wavenumber of 1560 cm-1 corresponding to the characteristic fingerprint of the C–O vibration stretching in the capsule shell made from starch modified by HPMC. The concentration of modified starch affects the capsule shell’s characteristics, showing that capsule shell F2 (2:1) has the best formulation.
Keywords
Full Text:
PDFReferences
Azizah, S. N., 2023. Formulasi dan Analisis Karakteristik Cangkang Kapsul Pati Batang Kelapa Sawit (Elaeis guineensis Jacq.) dan HPMC. Skripsi. Universitas Lambung Mangkurat, Banjarbaru.
Bakewell-Stone, P., 2023. Elaeis Guineensis (African Oil Palm). CABI Compendium, 20295, 1–28. https://doi.org/10.1079/cabicompendium.20295.
Bambardekar, Y., 2020. Modification of starch: A Green approach. Walnut Publication, India.
Cahyaningtyas, A. A., Ermawati, R., Supeni, G., Syamani, F.A., Masruchin, N., Kusumaningrum, W.B., Pramasari, D. A., Darmawan, T., Ismadi, I., Wibowo, E. S., Triwibowo, D., and Kusumah, S. S., 2019. Modifikasi dan Karakterisasi Pati Batang Kelapa Sawit Secara Hidrolisis Sebagai Bahan Baku Bioplastik. Jurnal Kimia dan Kemasan, 41, 37–44. https://doi.org/10.24817/jkk.v41i1.4623.
Dewi, S. P., Devi, S., and Ambarwati, S., 2022. Pembuatan dan Uji Organoleptik Eco-Enzyme dari Kulit Buah Jeruk. Prosiding Seminar Nasional Hukum, Bisnis, Sains Dan Teknologi. pp. 649–657.
Essawy, H., and Tauer, K., 2010. Polyamide Capsules via Soft Templating with Oil Drops—1. Morphological Studies of the Capsule Wall. Colloid and Polymer Science, 288, 317–331. https://doi.org/10.1007/s00396-009-2175-0.
Floryanzia, S., Ramesh, P., Mills, M., Kulkarni, S., Chen, G., Shah, P., and Lavrich, D., 2022. Disintegration Testing Augmented by Computer Vision Technology. International Journal of Pharmaceutics, 619, 1–27. https://doi.org/10.1016/j.ijpharm.2022.121668.
Frangopoulos, T., Marinopoulou, A., Goulas, A., Likotrafiti, E., Rhoades, J., Petridis, D., Kannidou, E., Stamelos, A., Theodoridou, M., Arampatzidou, A., Tosounidou, A., Tsekmes, L., Tsichlakis, K., Gkikas, G., Tourasanidis, E., and Karageorgiou, V., 2023. Optimizing the Functional Properties of Starch-Based Biodegradable Films. Foods, 12, 1–24. https://doi.org/10.3390/foods12142812.
Gracia, T. Y., 2023. Dekolorisasi, Simplex Lattice Design (SLD), dan Spesifikasi Cangkang Kapsul Pati Batang Kelapa Sawit (Elaeis guineensis Jacq.). Skripsi. Universitas Lambung Mangkurat, Banjarbaru.
Gullón, B., Montenegro, M. I., Ruiz-Matute, A. I., Cardelle-Cobas, A., Corzo, N., and Pintado, M. E., 2016. Synthesis, Optimization and Structural Characterization of a Chitosan–Glucose Derivative Obtained by the Maillard Reaction. Carbohydrate Polymers, 137, 382–389. https://doi.org/10.1016/j.carbpol.2015.10.075.
Hung, N. Van, Nguyet, B. T. M., Nghi, N .H., Thanh, N .M., Quyen, N. D. V., Nguyen, V. T., Nhiem, D. N., and Khieu, D. Q., 2022. Highly Effective Adsorption of Organic Dyes from Aqueous Solutions on Longan Seed-Derived Activated Carbon. Environmental Engineering Research, 28, 1–14. https://doi.org/10.4491/eer.2022.116.
Ibrahim, M., Nada, A., and Kamal, D. E., 2005. Density Functional Theory and FTIR Spectroscopic Study of Carboxyl Group. Indian Journal of Pure and Applied Physics, 43, 911–917.
Joshi, S.C., 2011. Sol-Gel Behavior of Hydroxypropyl Methylcellulose (HPMC) in Ionic Media Including Drug Release. Materials, 4, 1861–1905. https://doi.org/10.3390/ma4101861.
Kan, Y., Yue, Q., Li, D., Wu, Y., and Gao, B., 2017. Preparation and Characterization of Activated Carbons from Waste Tea by H 3 PO 4 Activation in Different Atmospheres for Oxytetracycline Removal. Journal of the Taiwan Institute of Chemical Engineers, 71, 494–500. https://doi.org/10.1016/j.jtice.2016.12.012.
Farmakope Indonesia, 2020. Kementerian Kesehatan Republik Indonesia, Jakarta.
Kocadağlı, T., and Gökmen, V., 2019. Caramelization in Foods: A Food Quality and Safety Perspective. Encyclopedia of Food Chemistry. Elsevier, Amsterdam, pp. 18–29. https://doi.org/10.1016/B978-0-08-100596-5.21630-2.
Kusumaningsih, T., Firdaus, M., Handayani, D. S., Juneasri, F. T. I., and Ananta, F. M., 2023. Effect of Acetylation Treatment on the Physicochemical and Morphological Properties of Three Sweet Potato Starches (Ipomoea batatas). Biodiversitas Journal of Biological Diversity, 24, 3038–3044. https://doi.org/10.13057/biodiv/d240559.
Kweon, D., and Han, J., 2023. Development of Hyaluronic Acid-Based Edible Film for Alleviating Dry Mouth. Food Science and Human Wellness, 12, 371–377. https://doi.org/10.1016/j.fshw.2022.07.039.
Marseno, D. W., Marsono, Y., and Pranoto, Y., 2022. Teknologi Modifikasi Pati. Gadjah Mada University Press, Yogyakarta.
Mutia, R., Prendika, W., Yunita, I., and Andriani, Y., 2022. Karakteristik Fisik Edible Film Berbahan Dasar Pati Batang Kelapa Sawit Termodifikasi dan Tapioka. Jurnal Pangan dan Agroindustri, 10, 143–150. https://doi.org/10.21776/ub.jpa.2022.010.03.2.
Nandiyanto, A. B. D., Ragadhita, R., and Fiandini, M., 2022. Interpretation of Fourier Transform Infrared Spectra (FTIR): A Practical Approach in the Polymer/Plastic Thermal Decomposition. Indonesian Journal of Science and Technology, 8, 113–126. https://doi.org/10.17509/ijost.v8i1.53297.
Nawaz, H., Waheed, R., Nawaz, M., and Shahwar, D., 2020. Physical and Chemical Modifications in Starch Structure and Reactivity. IntechOpen, Rijeka, pp. 1–21. https://doi.org/10.5772/intechopen.88870.
Nisah, K., 2018. Study Pengaruh Kandungan Amilosa dan Amilopektin Umbi-Umbian terhadap Karakteristik Fisik Plastik Biodegradable dengan Plastizicer Gliserol. BIOTIK: Jurnal Ilmiah Biologi Teknologi dan Kependidikan, 5, 106–113. https://doi.org/10.22373/biotik.v5i2.3018.
Prakoso, F. A. H., Indiarto, R., and Utama, G. L., 2023. Edible Film Casting Techniques and Materials and Their Utilization for Meat-Based Product Packaging. Polymers, 15, 1–17. https://doi.org/10.3390/polym15132800.
Pratama, R. A., and Widodo, T., 2020. The Impact of Nontariff Trade Policy of European Union Crude Palm Oil Import on Indonesia, Malaysia, and the Rest of the World Economy: An Analysis in GTAP Framework. Jurnal Ekonomi Indonesia, 9, 39–52. https://doi.org/10.52813/jei.v9i1.28.
Rizal, R., Salman, S., and Wulandari, E., 2023. Formilasi Cangkang Kapsul dari Pektin Kulit Buah Nangka (Artocarpus heterophyllus Lam) dan Uji Waktu Hancur Kapsul. Jurnal Ilmiah Farmasi Farmasyifa, 6, 187–202. https://doi.org/10.29313/jiff.v6i2.11933.
Sakeer, K., Scorza, T., Romero, H., Ispas-Szabo, P., and Mateescu, M. A., 2017. Starch Materials as Biocompatible Supports and Procedure for Fast Separation of Macrophages. Carbohydrate Polymers, 163, 108–117. https://doi.org/10.1016/j.carbpol.2017.01.053.
Santoso, R. A., and Atma, Y., 2020. Physical Properties of Edible Films from Pangasius Catfish Bone Gelatin-Breadfruits Strach with Different Formulations. Indonesian Food Science & Technology Journal, 3, 42–47. https://doi.org/10.22437/ifstj.v3i2.9498.
Sjöö, M., and Nilsson, L., 2017. Starch in food: Structure, function and applications, second. ed. Woodhead Publishing imprint of Elsevier, Cambridge, MA, United States.
Subroto, E., Cahyana, Y., Indiarto, R., and Rahmah, T. A., 2023. Modification of Starches and Flours by Acetylation and Its Dual Modifications: A Review of Impact on Physicochemical Properties and Their Applications. Polymers, 15, 1–34. https://doi.org/10.3390/polym15142990.
Tafa, K. D., Satheesh, N., and Abera, W., 2023. Mechanical Properties of Tef Starch Based Edible Films: Development and Process Optimization. Heliyon, 9, 1–14. https://doi.org/10.1016/j.heliyon.2023.e13160.
Teodoro, A. P., Mali, S., Romero, N., and de Carvalho, G. M., 2015. Cassava Starch Films Containing Acetylated Starch Nanoparticles as Reinforcement: Physical and Mechanical Characterization. Carbohydrate Polymers, 126, 9–16. https://doi.org/10.1016/j.carbpol.2015.03.021.
Villar, M. A., Barbosa, S. E., García, M. A., Castillo, L. A., and López, O. V., 2017. Starch-Based Materials in Food Packaging: Processing, Characterization and Applications. Elsevier, Academic Press, London, United Kingdom.
Wardana, A. A., and Yulia, 2018. The Influence of Acid Hydrolysis Followed by Autoclaving-Cooling on Physical Properties and Resistant Starch of Purple Sweet Potato (Ipomea batatas L.) Flour. IOP Conference Series: Earth and Environmental Science, 195, 1–9. https://doi.org/10.1088/1755-1315/195/1/012055.
Watson, J., and Cogan, L., 2020. Pharmacy Practice, sixth. ed. Elsevier, London.
Yang, N., Huang, Y., Hou, J., Zhang, Y., Tian, L., Chen, Z., Jin, Z., Shen, Y., and Guo, S., 2022. Rheological Behaviors and Texture Properties of Semi-Interpenetrating Networks of Hydroxypropyl Methylcellulose and Gellan. Food Hydrocolloids, 122, 1–10. https://doi.org/10.1016/j.foodhyd.2021.107097.
Zilhadia, Z., Harahap, Y., Jaswir, I., and Anwar, E., 2022. Evaluation and Characterization of Hard-Shell Capsules Formulated by Using Goatskin Gelatin. Polymers, 14, 1–13. https://doi.org/10.3390/polym14204416.
Refbacks
- There are currently no refbacks.