Recovery Nutrien dari Efluen Digester Anaerobik Air Limbah Tahu dengan Presipitasi Struvite

Zulkarnaini Zulkarnaini, Fenisa Fauziyah Marshal, Puti Sri Komala, Aufa Aniq Rumzi, Dewi Nilawati, Widyarani Widyarani, Diana Rahayuning Wulan, Neni Sintawardani, Nicolaus Nezha Nunez Mahasti

Abstract

Efluen dari digester anaerobik multistages fixed-bed reactor pengolahan air limbah industri tahu di Desa Giriharja, Kabupaten Sumedang, memerlukan pengolahan lanjut karena masih mengandung nutrien amonium dan fosfor yang melebihi standar baku mutu untuk badan air. Presipitasi struvite merupakan presipitasi kimia yang memungkinkan untuk memperoleh kembali (recovery) amonium dan fosfat dari air limbah dengan cara penambahan magnesium. Air laut dapat digunakan sebagai sumber magnesium untuk proses presipitasi untuk mengurangi biaya operasional. Presipitasi struvite dipengaruhi oleh pH, ion-ion penting, suhu, dan zat-zat asing. Nilai pH yang tinggi dapat meningkatkan efisiensi penyisihan dan recovery P dan N, akan tetapi dapat meningkatkan presipitasi magnesium dan kalsium fosfat sehingga mengurangi kualitas kristal struvite yang terbentuk. Tingkat kejenuhan struvite berbanding lurus dengan logaritma konsentrasi ionik dalam kristal. Tingkat pertumbuhan, jenis dan ukuran kristal dipengaruhi oleh tinggi suhu. Tingginya konsentrasi zat asing pada larutan dapat mengakibatkan terhalangnya pertumbuhan kristal struvite. Penggunaan air laut sebagai sumber magnesium dalam presipitasi struvite dapat mengurangi biaya produksi, transportasi, serta menggantikan penggunaan bahan kimia.

Nutrient Recovery from Tofu Wastewater Anaerobic Digester using Struvite Precipitation. Effluent from a multistage anaerobic digestion fixed-bed reactor for tofu industrial wastewater treatment in Giriharja Village, Sumedang Regency, requires further treatment because it still contains nutrients of ammonium and phosphorus that exceed the water quality standards. Struvite precipitation is a chemical precipitation process that allows for the recovery of ammonium and phosphate from wastewater by adding magnesium. Seawater can be used as a source of magnesium for the precipitation process to reduce operational costs. Struvite precipitation is affected by pH, essential ions, temperature, and foreign substances. A high pH value can increase the efficiency of P and N removal and recovery, but it can also increase the precipitation of magnesium and calcium phosphate, thereby reducing the quality of the struvite crystals formed. The level of struvite saturation is directly proportional to the logarithm of the ionic concentration in the crystals. The growth rate, type, and size of crystals are affected by temperature. High concentrations of foreign substances in the solution can inhibit struvite crystal growth. Using seawater as a source of magnesium in struvite precipitation can reduce production and transportation costs and replace the use of chemicals.

Keywords

ammonium; tofu wastewater; anaerobic digester; fixed-bed reactor; phosphorus; struvite recovery

Full Text:

PDF

References

Agung, R.T., and Winata, Hanry Sutan, 2017. Pengolahan Air Limbah Industri Tahu dengan Menggunakan Teknologi Plasma. Jurnal Imiah Teknik Lingkungan, 2.

Ali, F., Tian, K., and Wang, Z.-X., 2021. Modern Techniques Efficacy on Tofu Processing: A Review. Trends in Food Science & Technology, 116, 766–785. https://doi.org/10.1016/j.tifs.2021.07.023.

Ali, M., Oshiki, M., Rathnayake, L., Ishii, S., Satoh, H., and Okabe, S., 2015. Rapid and Successful Start-up of Anammox Process by Immobilizing the Minimal Quantity of Biomass in PVA-SA Gel Beads. Water Research, 79. https://doi.org/10.1016/j.watres.2015.04.024.

Barampouti, E.M., Mai, S., Malamis, D., Moustakas, K., and Loizidou, M., 2020. Exploring Technological Alternatives of Nutrient Recovery from Digestate as a Secondary Resource. Renewable and Sustainable Energy Reviews, 134, 110379. https://doi.org/10.1016/j.rser.2020.110379.

Benjamin, M.M., 2015. Water Chemistry, second ed. Waveland Press, Inc., Long Grove, Illinois.

Bennett, E.M., and Schipanski, M.E., 2013. The Phosphorus Cycle, in: Fundamentals of Ecosystem Science. Elsevier, pp. 159–178. https://doi.org/10.1016/B978-0-08-091680-4.00008-1. Benjamin, M,M., 2015. Water Chemistry, second ed. Waveland Press, Inc., Long Grove, Illinois.

Campos, J.L., Crutchik, D., Franchi, Ó., Pavissich, J.P., Belmonte, M., Pedrouso, A., Mosquera-Corral, A., and Val del Río, Á., 2019. Nitrogen and Phosphorus Recovery from Anaerobically Pretreated Agro-Food Wastes: A Review. Frontiers in Sustainable Food Systems, 2. https://doi.org/10.3389/fsufs.2018.00091.

Çelen, I., and Türker, M., 2001. Recovery of Ammonia as Struvite from Anaerobic Digester Effluents. Environmental Technology, 22, 1263–1272. https://doi.org/10.1080/09593332208618192.

Chen, Y., Mao, W., Yang, W., Niazi, N.K., Wang, B., and Wu, P., 2023. A Novel Phosphate Rock-Magnetic Biochar for Pb2+ and Cd2+ Removal in Wastewater: Characterization, Performance and Mechanisms. Environmental Technology & Innovation, 32, 103268. https://doi.org/10.1016/j.eti.2023.103268.

Christiaens, M.E.R., Gildemyn, S., Matassa, S., Ysebaert, T., De Vrieze, J., and Rabaey, K., 2017. Electrochemical Ammonia Recovery from Source-Separated Urine for Microbial Protein Production. Environmental Science & Technology, 51, 13143–13150. https://doi.org/10.1021/acs.est.7b02819.

Dodds, W.K., Bouska, W.W., Eitzmann, J.L., Pilger, T.J., Pitts, K.L., Riley, A.J., Schloesser, J.T., and Thornbrugh, D.J., 2009. Eutrophication of U.S. Freshwaters: Analysis of Potential Economic Damages. Environmental Science & Technology, 43, 12–19. https://doi.org/10.1021/es801217q.

Dube, P.J., Vanotti, M.B., Szogi, A.A., and García-González, M.C., 2016. Enhancing Recovery of Ammonia from Swine Manure Anaerobic Digester Effluent Using Gas-Permeable Membrane Technology. Waste Management, 49, 372–377. https://doi.org/10.1016/j.wasman.2015.12.011.

Faisal, M., Gani, A., Mulana, F., and Daimon, H., 2016. Treatment and Utilization of Industrial Tofu Waste in Indonesia. Asian Journal of Chemistry, 28, 501–507. https://doi.org/10.14233/ajchem.2016.19372.

Fangueiro, D., Snauwaert, E., Provolo, G., Hidalgo, D., Adani, F., Kabbe, C., Bonmati, A., and Brandsma, J., 2017. Available Technologies for Nutrients Recovery from Animal Manure and Digestates. EIP-AGRI Agriculture & Innovation, 1–20.

Gong, Y., and Zhao, D., 2014. Physical–Chemical Processes for Phosphorus Removal and Recovery, in: Comprehensive Water Quality and Purification. Elsevier, pp. 196–222. https://doi.org/10.1016/B978-0-12-382182-9.00086-4.

González-Morales, C., Fernández, B., Molina, F.J., Naranjo-Fernández, D., Matamoros-Veloza, A., and Camargo-Valero, M.A., 2021. Influence of pH and Temperature on Struvite Purity and Recovery from Anaerobic Digestate. Sustainability, 13, 10730. https://doi.org/10.3390/su131910730.

Grini, T., 2018. Seawater as Magnesium Source for Struvite Crystallization in Wastewater. Norwegian University of Science and Technology, Norwegia.

Guan, Q., Zeng, G., Gong, B., Li, Y., Ji, H., Zhang, J., Song, J., Liu, C., Wang, Z., and Deng, C., 2021. Phosphorus Recovery and Iron, Copper Precipitation from Swine Wastewater via Struvite Crystallization Using Various Magnesium Compounds. Journal of Cleaner Production, 328, 129588. https://doi.org/10.1016/j.jclepro.2021.129588.

IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.59327/IPCC/AR6-9789291691647.001.

Ha, T.-H., Mahasti, N.N.N., Ha, H.-Q., Liao, P.-L., Huang, Y.-H., and Lu, M.-C., 2024. Recovery of Nitrogen as Struvite from Swine Wastewater: Comparison Study of Batch and Continuous Fluidized-Bed Crystallization Process. Separation and Purification Technology, 351, 128045. https://doi.org/10.1016/j.seppur.2024.128045.

Ha, T.-H., Mahasti, N.N.N., Lu, M.-C., and Huang, Y.-H., 2023. Ammonium-Nitrogen Recovery as Struvite from Swine Wastewater Using Various Magnesium Sources. Separation and Purification Technology, 308, 122870. https://doi.org/10.1016/j.seppur.2022.122870.

Hassan, P., Mavinic, D.S., Rezania, B., Kelly, H., and Lo, K. V., 2013. ANAMMOX Combined with Struvite Crystallization: A Sustainable Solution for Nitrogen and Phosphorus Removal and Recovery from Side Stream Processes. Proceedings of the Water Environment Federation, 2013, 318–327. https://doi.org/10.2175/193864713813525572.

Hu, Q., He, L., Lan, R., Feng, C., and Pei, X., 2023. Recent Advances in Phosphate Removal from Municipal Wastewater by Electrocoagulation Process: A Review. Separation and Purification Technology, 308, 122944. https://doi.org/10.1016/j.seppur.2022.122944.

Huang, H., Xiao, D., Liu, J., Hou, L., and Ding, L., 2015. Recovery and Removal of Nutrients from Swine Wastewater by Using a Novel Integrated Reactor for Struvite Decomposition and Recycling. Scientific Reports, 5, 10183. https://doi.org/10.1038/srep10183.

Huang, H., Zhang, D., Li, J., Guo, G., and Tang, S., 2017. Phosphate Recovery from Swine Wastewater Using Plant Ash in Chemical Crystallization. Journal of Cleaner Production, 168, 338–345. https://doi.org/10.1016/j.jclepro.2017.09.042.

Jiang, H.M., Luo, S.J., Shi, X.S., Dai, M., and Guo, R.B., 2013. A System Combining Microbial Fuel Cell with Photobioreactor for Continuous Domestic Wastewater Treatment and Bioelectricity Generation. Journal of Central South University, 20. https://doi.org/10.1007/s11771-013-1510-2.

Kartal, B., Rattray, J., van Niftrik, L.A., van de Vossenberg, J., Schmid, M.C., Webb, R.I., Schouten, S., Fuerst, J.A., Damsté, J.S., Jetten, M.S.M., and Strous, M., 2007. Candidatus “Anammoxoglobus Propionicus” a New Propionate Oxidizing Species of Anaerobic Ammonium Oxidizing Bacteria. Systematic and Applied Microbiology, 30, 39–49. https://doi.org/10.1016/j.syapm.2006.03.004.

Kataki, S., and Baruah, D.C., 2018. Prospects and Issues of Phosphorus Recovery as Struvite from Waste Streams, in: Handbook of Environmental Materials Management. Springer International Publishing, Cham, pp. 1–50. https://doi.org/10.1007/978-3-319-58538-3_19-1.

Kataki, S., West, H., Clarke, M., and Baruah, D.C., 2016a. Phosphorus Recovery as Struvite: Recent Concerns for Use of Seed, Alternative Mg Source, Nitrogen Conservation and Fertilizer Potential. Resources, Conservation and Recycling, 107, 142–156. https://doi.org/10.1016/j.resconrec.2015.12.009.

Kataki, S., West, H., Clarke, M., and Baruah, D.C., 2016b. Phosphorus Recovery as Struvite from Farm, Municipal and Industrial Waste: Feedstock Suitability, Methods and Pre-Treatments. Waste Management, 49, 437–454. https://doi.org/10.1016/j.wasman.2016.01.003.

Kiani, M.K.D., Parsaee, M., Ardebili, S.M.S., Reyes, I.P., Fuess, L.T., and Karimi, K., 2022. Different Bioreactor Configurations for Biogas Production from Sugarcane Vinasse: A Comprehensive Review. Biomass and Bioenergy, 161, 106446. https://doi.org/10.1016/j.biombioe.2022.106446.

Komala, P.S., Zulkarnaini, Z., Kurniati, R.I., and Fauzi, M., 2024. The Effect of Anthropogenic Activities on the Spatial Distribution of Total Nitrogen and Total Phosphate in Lake Maninjau. Journal of Water and Land Development, 71–78. https://doi.org/10.24425/jwld.2024.149109.

Kuenen, J.G., 2008. Anammox Bacteria: From Discovery to Application. Nature Reviews Microbiology, 6, 320–326. https://doi.org/10.1038/nrmicro1857.

Lackner, S., Gilbert, E.M., Vlaeminck, S.E., Joss, A., Horn, H., and van Loosdrecht, M.C.M., 2014. Full-Scale Partial Nitritation/Anammox Experiences – An Application Survey. Water Research, 55, 292–303. https://doi.org/10.1016/j.watres.2014.02.032.

Lahav, O., and Birnhack, L., 2019. Aquatic Chemistry. De Gruyter. https://doi.org/10.1515/9783110603958.

Le Corre, K.S., Valsami-Jones, E., Hobbs, P., and Parsons, S.A., 2009. Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643380701640573.

Li, X., Zhao, X., Zhang, J., Hao, J., and Zhang, Q., 2022. Struvite Crystallization by Using Active Serpentine: An Innovative Application for the Economical and Efficient Recovery of Phosphorus from Black Water. Water Research, 221, 118678. https://doi.org/10.1016/j.watres.2022.118678.

Liberti, L., Limoni, N., Lopez, A., Passino, R., and Boari, G., 1986. The 10 M3 H−1 Rim-Nut Demonstration Plant at West Bari for Removing and Recovering N and P from Wastewater. Water Research, 20, 735–739. https://doi.org/10.1016/0043-1354(86)90097-7.

Liu, Y., and Chen, J., 2014. Phosphorus Cycle, in: Encyclopedia of Ecology. Elsevier, pp. 181–191. https://doi.org/10.1016/B978-0-12-409548-9.09043-6.

Ma, H., Xue, Y., Zhang, Y., Kobayashi, T., Kubota, K., and Li, Y.-Y., 2020. Simultaneous Nitrogen Removal and Phosphorus Recovery Using an Anammox Expanded Reactor Operated at 25 °C. Water Research, 172, 115510. https://doi.org/10.1016/j.watres.2020.115510.

Martens, D.A., 2005. Denitrification, in: Encyclopedia of Soils in the Environment. Elsevier, pp. 378–382. https://doi.org/10.1016/B0-12-348530-4/00138-7.

Mehedi, I.M., Zahari, M.S.M., Al-Saggaf, U.M., Alam, M.M., and Al -Saggaf, A.U., 2022. Removal of Ammoniacal Nitrogen from Landfill Leachates. Environmental Technology. US11370675B1.

Muhmood, A., Lu, J., Dong, R., and Wu, S., 2019. Formation of Struvite from Agricultural Wastewaters and Its Reuse on Farmlands: Status and Hindrances to Closing the Nutrient Loop. Journal of Environmental Management, 230, 1–13. https://doi.org/10.1016/j.jenvman.2018.09.030.

Muhmood, A., Wu, S., Lu, J., Ajmal, Z., Luo, H., and Dong, R., 2018. Nutrient Recovery from Anaerobically Digested Chicken Slurry via Struvite: Performance Optimization and Interactions with Heavy Metals and Pathogens. Science of The Total Environment, 635, 1–9. https://doi.org/10.1016/j.scitotenv.2018.04.129.

Nagarajan, A., Goyette, B., Raghavan, V., Bhaskar, A., and Rajagopal, R., 2023. Nutrient Recovery via Struvite Production from Livestock Manure-Digestate Streams: Towards Closed Loop Bio-Economy. Process Safety and Environmental Protection, 171, 273–288. https://doi.org/10.1016/j.psep.2023.01.006.

Nilawati, D., Matsuura, N., Honda, R., Hara-Yamamura, H., Sintawardani, N., and Yamamoto-Ikemoto, R., 2021. Methane Recovery from Acidic Tofu Wastewater Using an Anaerobic Fixed-Bed Reactor with Bamboo as the Biofilm Carrier. Journal of Material Cycles and Waste Management, 23, 537–547. https://doi.org/10.1007/s10163-020-01145-9.

Omidire, N.S., and Brye, K.R., 2022. Wastewater‐recycled Struvite as a Phosphorus Source in a Wheat–Soybean Double‐crop Production System in Eastern Arkansas. Agrosystems, Geosciences & Environment, 5. https://doi.org/10.1002/agg2.20271.

Osborne, N.J.T., Webb, P.M., and Shaw, G.R., 2001. The Toxins of Lyngbya Majuscula and Their Human and Ecological Health Effects. Environment International, 27, 381–392. https://doi.org/10.1016/S0160-4120(01)00098-8.

Owodunni, A.A., Ismail, S., Kurniawan, S.B., Ahmad, A., Imron, M.F., and Abdullah, S.R.S., 2023. A Review on Revolutionary Technique for Phosphate Removal in Wastewater Using Green Coagulant. Journal of Water Process Engineering, 52, 103573. https://doi.org/10.1016/j.jwpe.2023.103573.

Parsons, C., Stüeken, E.E., Rosen, C.J., Mateos, K., and Anderson, R.E., 2021. Radiation of Nitrogen‐metabolizing Enzymes across the Tree of Life Tracks Environmental Transitions in Earth History. Geobiology, 19, 18–34. https://doi.org/10.1111/gbi.12419.

Pepè Sciarria, T., Zangarini, S., Tambone, F., Trombino, L., Puig, S., and Adani, F., 2023. Phosphorus Recovery from High Solid Content Liquid Fraction of Digestate Using Seawater Bittern as the Magnesium Source. Waste Management, 155, 252–259. https://doi.org/10.1016/j.wasman.2022.11.008.

Putra, R.P., Zulkarnaini, Z., and Komala, P.S., 2020. Start – Up Proses Anammox Menggunakan Lumpur Telaga Kotobaru Sebagai Inokulum. Jurnal Teknologi Lingkungan, 21, 138–146. https://doi.org/10.29122/jtl.v21i2.4155.

Rahayu, R.N., Moersidik, S.S., Christiana, S., 1996. Tofu Wastewater Treatment using Upflow Anaerobic Sludge Blanket (UASB) Reactor. Thesis. Universitas Indonesia.

Ranieri, E., Giuliano, S., and Ranieri, A.C., 2021. Energy Consumption in Anaerobic and Aerobic Based Wastewater Treatment Plants in Italy. Water Practice and Technology, 16, 851–863. https://doi.org/10.2166/wpt.2021.045.

REEEP, 2014. Tofu production: a massive opportunity for RE biogas in Indonesia [WWW Document].

Rizzioli, F., Bertasini, D., Bolzonella, D., Frison, N., and Battista, F., 2023. A Critical Review on the Techno-Economic Feasibility of Nutrients Recovery from Anaerobic Digestate in the Agricultural Sector. Separation and Purification Technology, 306, 122690. https://doi.org/10.1016/j.seppur.2022.122690.

Romillac, N., 2019. Ammonification, in: Encyclopedia of Ecology. Elsevier, pp. 256–263. https://doi.org/10.1016/B978-0-12-409548-9.10889-9.

Sakinah, N.E., Rahmatullah, L.T., Kuncoro, E.P., and Oktavitri, N.I., 2019. Performance of Sequencing Batch Reactor (SBR) of Treated Tofu Wastewater: Variation of Contact Time and Activated Sludge Sources. IOP Conference Series: Earth and Environmental Science, 259, 012017. https://doi.org/10.1088/1755-1315/259/1/012017.

Shaddel, S., Grini, T., Ucar, S., Azrague, K., Andreassen, J.-P., and Østerhus, S.W., 2020. Struvite Crystallization by Using Raw Seawater: Improving Economics and Environmental Footprint While Maintaining Phosphorus Recovery and Product Quality. Water Research, 173, 115572. https://doi.org/10.1016/j.watres.2020.115572.

Shih, K., and Yan, H., 2016. The Crystallization of Struvite and Its Analog (K-Struvite) From Waste Streams for Nutrient Recycling, in: Environmental Materials and Waste. Elsevier, pp. 665–686. https://doi.org/10.1016/B978-0-12-803837-6.00026-3.

Siciliano, A., Limonti, C., Curcio, G.M., and Molinari, R., 2020. Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater. Sustainability (Switzerland),. https://doi.org/10.3390/su12187538.

Sim, C.H., Yusoff, M.K., Shutes, B., Ho, S.C., and Mansor, M., 2008. Nutrient Removal in a Pilot and Full Scale Constructed Wetland, Putrajaya City, Malaysia. Journal of Environmental Management, 88, 307–317. https://doi.org/10.1016/j.jenvman.2007.03.011.

Sintawardani, N., Hamidah, U., Widyarani, Wulan, D.R., and Nilawati, D., 2022. Recovery of Energy and Materials From Small-Scale Tofu Processing Industries in Indonesia. pp. 231–256. https://doi.org/10.4018/978-1-7998-9664-7.ch013.

Skiba, U., 2008. Denitrification. Encyclopedia of Ecology. Elsevier, pp. 866–871.

Speece, R., 1997. Anaerobic Biotechnology for Industrial Wastewaters. Choice Reviews Online, 35, 35–0934. https://doi.org/10.5860/CHOICE.35-0934.

Stumm, W. and Morgan, J.J., 1996. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, 3rd Edition, John Wiley & Sons, Inc., New York.

Swami, M., Desai, P., Patel, K., and Verma, J., 2019. A Review:“Global Trends in Recovery of Phosphorus by Different Techniques.” International Journal of Research and Analytical Reviews, 6.

Thakur, I.S., and Medhi, K., 2019. Nitrification and Denitrification Processes for Mitigation of Nitrous Oxide from Waste Water Treatment Plants for Biovalorization: Challenges and Opportunities. Bioresource Technology, 282, 502–513. https://doi.org/10.1016/j.biortech.2019.03.069.

Tong, J., and Chen, Y., 2009. Recovery of Nitrogen and Phosphorus from Alkaline Fermentation Liquid of Waste Activated Sludge and Application of the Fermentation Liquid to Promote Biological Municipal Wastewater Treatment. Water Research, 43, 2969–2976. https://doi.org/10.1016/j.watres.2009.04.015.

Trang, N.T.T., Yen, L.T.H., Hanh, L.T.H., and Thanh, B.X., 2018. Struvite Formation from Wastewater: Affecting Factors and Nutrient Recovery. GeoScience Engineering, 64, 9–13. https://doi.org/10.2478/gse-2018-0002.

Trygar, R., 2009. Nitrogen Control in Wastewater Treatment Plants, second Ed. University of Florida TREEO Center.

Ueno, Y., and Fujii, M., 2001. Three Years Experience of Operating and Selling Recovered Struvite from Full-Scale Plant. Environmental Technology, 22, 1373–1381. https://doi.org/10.1080/09593332208618196.

Voss, M., Bange, H.W., Dippner, J.W., Middelburg, J.J., Montoya, J.P., and Ward, B., 2013. The Marine Nitrogen Cycle: Recent Discoveries, Uncertainties and the Potential Relevance of Climate Change. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20130121. https://doi.org/10.1098/rstb.2013.0121.

Wang, C.-C., Hao, X.-D., Guo, G.-S., and van Loosdrecht, M.C.M., 2010. Formation of Pure Struvite at Neutral PH by Electrochemical Deposition. Chemical Engineering Journal, 159, 280–283. https://doi.org/10.1016/j.cej.2010.02.026.

Wang, J., Song, J., Lu, J., and Zhao, X., 2014. Comparison of Three Aluminum Coagulants for Phosphorus Removal. Journal of Water Resource and Protection, 06, 902–908. https://doi.org/10.4236/jwarp.2014.610085.

Wang, S.-K., Wang, X., Tian, Y.-T., and Cui, Y.-H., 2020a. Nutrient Recovery from Tofu Whey Wastewater for the Economical Production of Docosahexaenoic Acid by Schizochytrium Sp. S31. Science of The Total Environment, 710, 136448. https://doi.org/10.1016/j.scitotenv.2019.136448.

Wang, S.-K., Wang, X., Tian, Y.-T., and Cui, Y.-H., 2020b. Nutrient Recovery from Tofu Whey Wastewater for the Economical Production of Docosahexaenoic Acid by Schizochytrium Sp. S31. Science of The Total Environment, 710, 136448. https://doi.org/10.1016/j.scitotenv.2019.136448.

Ward, B.B., 2013. Nitrification, in: Encyclopedia of Ecology. Elsevier, pp. 351–358. https://doi.org/10.1016/B978-0-12-409548-9.00697-7.

Werkneh, A.A., and Gebru, S.B., 2023. Development of Ecological Sanitation Approaches for Integrated Recovery of Biogas, Nutrients and Clean Water from Domestic Wastewater. Resources, Environment and Sustainability, 11, 100095. https://doi.org/10.1016/j.resenv.2022.100095.

Widyarani, Butar Butar, E.S., Dara, F., Hamidah, U., Sriwuryandari, L., Hariyadi, H.R., and Sintawardani, N., 2019. Distribution of Protein Fractions in Tofu Whey Wastewater and Its Potential Influence on Anaerobic Digestion. IOP Conference Series: Earth and Environmental Science, 277, 012012. https://doi.org/10.1088/1755-1315/277/1/012012.

Wu, H., and Vaneeckhaute, C., 2022. Nutrient Recovery from Wastewater: A Review on the Integrated Physicochemical Technologies of Ammonia Stripping, Adsorption and Struvite Precipitation. Chemical Engineering Journal, 433, 133664. https://doi.org/10.1016/j.cej.2021.133664.

Wu, J., Li, Y., Xu, B., Li, M., Wang, J., Shao, Y., Chen, F., Sun, M., and Liu, B., 2022. Effects of Physicochemical Parameters on Struvite Crystallization Based on Kinetics. International Journal of Environmental Research and Public Health, 19, 7204. https://doi.org/10.3390/ijerph19127204.

Zeng, L., and Li, X., 2006. Nutrient Removal from Anaerobically Digested Cattle Manure by Struvite Precipitation. Journal of Environmental Engineering and Science, 5, 285–294. https://doi.org/10.1139/s05-027.

Zhang, Z., 2022. Seawater as Magnesium Source for Struvite Recovery from Wastewater. Thesis. University of Auckland, Auckland.

Zhou, Y., and Wang, J., 2023. Detection and Removal Technologies for Ammonium and Antibiotics in Agricultural Wastewater: Recent Advances and Prospective. Chemosphere. https://doi.org/10.1016/j.chemosphere.2023.139027.

Zhou, Y., Zhu, Y., Zhu, J., Li, C., and Chen, G., 2023. A Comprehensive Review on Wastewater Nitrogen Removal and Its Recovery Processes. International Journal of Environmental Research and Public Health, 20, 3429. https://doi.org/10.3390/ijerph20043429.

Zulkarnaini, Z., Komala, P.S., and Almi, A., 2021. Anammox Biofilm Process Using Sugarcane Bagasse as an Organic Carrier. Indonesian Journal of Biotechnology, 26, 25. https://doi.org/10.22146/ijbiotech.58554.

Refbacks

  • There are currently no refbacks.