Preparasi Karbon Aktif Sekam Padi dan Serbuk Gergaji Kayu Jati melalui Proses Refluks sebagai Adsorben Larutan Multi Ion Fe(II)/Cu(II)
Abstract
Sekam padi dan serbuk gergaji kayu jati merupakan bahan berlignoselulosa yang berpotensi sebagai bahan karbon aktif. Penelitian ini bertujuan untuk menentukan pengaruh proses refluks terhadap karakter karbon aktif sekam padi (RHAC) dan serbuk gergaji kayu jati (TSAC) sebagai adsorben. Sekam padi dan serbuk gergaji kayu jati dikarbonisasi pada suhu 400 °C lalu direfluks menggunakan larutan NaOH 2 N pada suhu 100 °C. Karbon diimpregnasi dengan rasio karbon:H3PO4 1:3 (b/b). Karbon aktif RHAC/TSAC diaplikasikan menjerap multi ion Fe(II)/Cu(II) diikuti studi kinetika dan isoterm adsorpsinya. Hasil penelitian menunjukkan karbon aktif RHAC dan TSAC memiliki gugus aktif O–H, C-H stretching, C≡C, C=C/C=O, C–H, dan P=O dengan dominasi unsur C (~53%) dan O (~48,1%). Karbon aktif TSAC 2321 hasil refluks memiliki luas permukaan terbesar mencapai 49,6795 m²/g. Kajian kinetika adsorpsi multi ion Fe(II)/Cu(II) dengan RHAC dan TSAC mengikuti pemodelan pseudo second order (PSO), sedangkan kajian isoterm adsorpsi multi ion Fe(II)/Cu(II) mengikuti beragam pemodelan seperti Redlich-Peterson, Elovich, dan Jovanovich. Kapasitas adsorpsi terbaik RHAC 232 pada ion Fe(II) dan RHAC 2321 pada ion Cu(II) berturut-turut sebesar 0,3426 mg/g dan 0,4134 mg/g. Karbon aktif TSAC 232 dan 2321 cenderung menjerap ion Cu(II) dengan kapasitas adsorpsi masing-masing sebesar 0,4609 mg/g dan 0,5556 mg/g.
Preparation of Activated Carbon from Rice Husk and Teak Sawdust using Reflux Process as Adsorbent for Multi Ion Fe(II)/Cu(II) Solutions. Rice husks and teak wood sawdust are lignocellulosic materials with potential as activated carbon sources. This study aims to determine the effect of the reflux process on the characteristics of RHAC and TSAC as an adsorbent. The rice husk and teak sawdust were carbonized at 400 °C and refluxed using 2 N NaOH solution at 100 °C. The carbon was impregnated using 30% H3PO4 with a carbon: H3PO4 ratio 1:3 (w/w). The RHAC/TSAC was applied to adsorb multi-ions Fe(II)/Cu(II), and its adsorption kinetics and isotherms studies were studied. The results showed that the RHAC and TSAC had O-H, C–H stretching, C≡C, C=C/C=O, C-H, and P=O functional groups with the dominance of C (~53%wt) and O (~48.1%wt) elements. The refluxed TSAC 2321 has the largest surface area of 49.6795 m²/g. The adsorption kinetics study of the Fe(II)/Cu(II) multi-ion using RHAC and TSAC follows the pseudo-second-order (PSO) modeling, while the adsorption isotherm study of the Fe(II)/Cu(II) multi-ion using RHAC and TSAC follows various models such as Redlich-Peterson, Elovich, and Jovanovich. The best adsorption capacity of RHAC 232 on Fe(II) ions and RHAC 2321 on Cu(II) ions is 0.3426 mg/g and 0.4134 mg/g, respectively. The TSAC 232 and 2321 tend to adsorb Fe(II) and Cu(II) ions with an adsorption capacity reaching 0.4609 mg/g and 0.5556 mg/g, respectively.
Keywords
Full Text:
PDFReferences
Aldemir, A., Turan, A., Kul, A.R., and Koyuncu, H., 2023. Comprehensive Investigation of Basic Red 46 Removal by Pinecone Adsorbent: Experimental, Isotherm, Kinetic and Thermodynamic Studies. International Journal of Environmental Science and Technology, 20, 2601–2622. https://doi.org/10.1007/s13762-022-04456-6.
Aprilia, Y., Arnelli, A., and Astuti, Y., 2020. Modification of Activated Carbon from Rice Husk Using Hexadecyltrimethylammonium Bromide (HDTMA-Br) Surfactant and ZnCl2 Activator and Microwaves for Nitrate Ion Adsorption. Jurnal Kimia Sains dan Aplikasi, 23, 377–382. https://doi.org/10.14710/JKSA.23.11.377-382.
Armesto, L., Bahillo, A., Veijonen, K., Cabanillas, A., and Otero, J., 2002. Combustion Behaviour of Rice Husk in a Bubbling Fluidised Bed. Biomass and Bioenergy, 23, 171–179. https://doi.org/10.1016/S0961-9534(02)00046-6.
Ayawei, N., Ebelegi, A.N., and Wankasi, D., 2017. Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry, 2017, 1–11. https://doi.org/10.1155/2017/3039817.
Azevedo, D.C.S., Araújo, J.C.S., Bastos-Neto, M., Torres, A.E.B., Jaguaribe, E.F., and Cavalcante, C.L., 2007. Microporous Activated Carbon Prepared from Coconut Shells Using Chemical Activation with Zinc Chloride. Microporous and Mesoporous Materials, 100, 361–364. https://doi.org/10.1016/J.MICROMESO.2006.11.024.
Batool, F., Akbar, J., Iqbal, S., Noreen, S., and Bukhari, S.N.A., 2018. Study of Isothermal, Kinetic, and Thermodynamic Parameters for Adsorption of Cadmium: An Overview of Linear and Nonlinear Approach and Error Analysis. Bioinorganic Chemistry and Applications, 1, 3463724. https://doi.org/10.1155/2018/3463724.
Benjelloun, M., Miyah, Y., Akdemir Evrendilek, G., Zerrouq, F., and Lairini, S., 2021. Recent Advances in Adsorption Kinetic Models: Their Application to Dye Types. Arabian Journal of Chemistry, 14, 103031. https://doi.org/10.1016/J.ARABJC.2021.103031.
Bohli, T., 2013. Comparative Study of Bivalent Cationic Metals Adsorption Pb(II), Cd(II), Ni(II) and Cu(II) on Olive Stones Chemically Activated Carbon. Journal of Chemical Engineering & Process Technology, 04. https://doi.org/10.4172/2157-7048.1000158.
Castro, J.B., Bonelli, P.R., Cerrella, E.G., and Cukierman, A.L., 2000. Phosphoric Acid Activation of Agricultural Residues and Bagasse from Sugar Cane: Influence of the Experimental Conditions on Adsorption Characteristics of Activated Carbons. Industrial and Engineering Chemistry Research, 39, 4166–4172. https://doi.org/10.1021/IE0002677.
Choirunnisa, D.A., 2024. Modifikasi Karbon Aktif Serbuk Gergaji Kayu dengan Surfaktan dalam Penjerap Limbah Timbal. Tugas Akhir. Universitas Kristen Satya Wacana, Salatiga.
Dada, A.O., Adekola, F.A., Odebunmi, E.O., Ogunlaja, A.S., and Bello, O.S., 2021. Two–Three Parameters Isotherm Modeling, Kinetics with Statistical Validity, Desorption and Thermodynamic Studies of Adsorption of Cu(II) Ions onto Zerovalent Iron Nanoparticles. Scientific Reports 2021, 11, 1–15. https://doi.org/10.1038/s41598-021-95090-8.
FitzPatrick, M., Champagne, P., Cunningham, M.F., and Whitney, R.A., 2010. A Biorefinery Processing Perspective: Treatment of Lignocellulosic Materials for the Production of Value-Added Products. Bioresource Technology, 101, 8915–8922. https://doi.org/10.1016/J.BIORTECH.2010.06.125.
Goltsman, B.M., and Yatsenko, E.A., 2024. Modern Fluxing Materials and Analysis of Their Impact on Silicate Structures: A Review. Open Ceramics, 17, 100540. https://doi.org/10.1016/J.OCERAM.2024.100540.
Hananto, F.T., 2022. Pengaruh Metode Pre-Aktivasi dan Rasio Impregnasi Asam Fosfat terhadap Karakteristik Karbon Aktif Sekam Padi. Tugas Akhir. Universitas Kristen Satya Wacana, Salatiga.
Ho, Y.S., and McKay, G., 1999. Pseudo-Second Order Model for Sorption Processes. Process Biochemistry, 34, 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5.
Krishnamoorthy, A., Sakthivel, P., Devadoss, I., and Illayaraja Muthaiyaa, V.M., 2020. Structural, Morphological and Photoluminescence Characteristics of Cd0.9-XZn0.1S Quantum Dots: Effect of Fe2+ Ion. Optik, 205, 164220. https://doi.org/10.1016/J.IJLEO.2020.164220.
Kul, A.R., Koyuncu, H., Turan, A., and Aldemir, A., 2023. Comparative Research of Isotherm, Kinetic, and Thermodynamic Studies for Neutral Red Adsorption by Activated Carbon Prepared from Apple Peel. Water, Air, and Soil Pollution, 234, 1–26. https://doi.org/10.1007/s11270-023-06392-8.
Kurniawati, P., Wiyantoko, B., Kurniawan, A., and Purbaningtias, T.E., 2016. Kinetic Study of Cr(VI) Adsorption on Hydrotalcite Mg/Al with Molar Ratio 2:1. Eksakta, 13, 11–21. https://doi.org/10.20885/eksakta.vol13.iss1-2.art2.
Largitte, L., and Pasquier, R., 2016. A Review of the Kinetics Adsorption Models and Their Application to the Adsorption of Lead by an Activated Carbon. Chemical Engineering Research and Design, 109, 495–504. https://doi.org/10.1016/j.cherd.2016.02.006.
Liou, T.H., and Wu, S.J., 2009. Characteristics of Microporous/Mesoporous Carbons Prepared from Rice Husk under Base- and Acid-Treated Conditions. Journal of Hazardous Materials, 171, 693–703. https://doi.org/10.1016/J.JHAZMAT.2009.06.056.
Luo, Y., Li, D., Sun, X., Cao, Q., and Liu, X., 2018. The Performance of Phosphoric Acid in the Preparation of Activated Carbon-Containing Phosporus Species from Rice Husk Residue. Journal of Materials Science,. https://doi.org/10.1007/s10853-018-03220-x.
Majd, M.M., Kordzadeh-Kermani, V., Ghalandari, V., Askari, A., and Sillanpää, M., 2022. Adsorption Isotherm Models: A Comprehensive and Systematic Review (2010−2020). Science of the Total Environment, 812. https://doi.org/10.1016/j.scitotenv.2021.151334.
Maulana, L.F., Imami Ghozali, H., Fikri, M.H., Agustina, E.I., and Ali, M., 2020. Pemanfaatan Limbah Serbuk Kayu di Desa Ranjok Kecamatan Gunung Sari Kabupaten Lombok Barat Menjadi Biomass Pellet Sebagai Sumber Energi Terbarukan. Jurnal PEPADU, 1, 133–138. https://doi.org/10.29303/jurnalpepadu.v1i1.87.
Media, K., 2020. Kisah Sukses Gapoktan Tani Subur Kabupaten Semarang Giling Padi 1,5 Ton Per Hari. <https://jateng.tribunnews.com/2020/04/21/kisah-sukses-gapoktan-tani-subur-kabupaten-semarang-giling-padi-15-ton-per-hari> (diakses 23 Mei 2023).
Mistry, B.D., 2009. A Handbook of Spectroscopic Data Chemistry (UV, IR, PMR, 13CNMR and Mass Spectroscopy). Oxford Book Company, Jaipur, India.
Nguyen, H.D., Tran, H.N., Chao, H.P., and Lin, C.C., 2019. Activated Carbons Derived from Teak Sawdust-Hydrochars for Efficient Removal of Methylene Blue, Copper, and Cadmium from Aqueous Solution. Water, 11, 2581. https://doi.org/10.3390/W11122581.
Parlar, M., and Yortsos, Y.C., 1988. Percolation Theory of Vapor Adsorption—Desorption Processes in Porous Materials. Journal of Colloid and Interface Science, 124, 162–176. https://doi.org/10.1016/0021-9797(88)90337-2.
Prabawanti, M.A.H., 2020. Kementan Perkirakan Produksi Beras Indonesia Surplus 6,4 Juta Ton. <https://money.kompas.com/read/2020/05/01/123000326/kementan-perkirakan-produksi-beras-indonesia-surplus-64-juta-ton?page=all> (diakses pada 13 Juli 2020).
Puziy, A.M., Poddubnaya, O.I., Martínez-Alonso, A., Suárez-García, F., and Tascón, J.M.D., 2002. Synthetic Carbons Activated with Phosphoric - Acid I. Surface Chemistry and Ion Binding Properties. Carbon, 40, 1493–1505. https://doi.org/10.1016/S0008-6223(01)00317-7.
Rahim, M.A.A., Ismail, M.M., and Mageed, A.M.A., 2015. Production Of Activated Carbon And Precipitated White Nanosilica From Rice Husk Ash. International Journal of Advanced Research, 3, 491–498.
Revellame, E.D., Fortela, D.L., Sharp, W., Hernandez, R., and Zappi, M.E., 2020. Adsorption Kinetic Modeling Using Pseudo-First Order and Pseudo-Second Order Rate Laws: A Review. Cleaner Engineering and Technology, 1, 100032. https://doi.org/10.1016/j.clet.2020.100032.
Riyanto, C.A., Kurniawan, E., and Aminu, N.R., 2021a. Pengaruh NaOH dan Suhu Aktivasi Terhadap Karakteristik Karbon Aktif Sekam Padi Teraktivasi H3PO4. Rafflesia Journal of Natural and Applied Sciences, 1, 59–68. https://doi.org/10.33369/rjna.v1i2.16864.
Riyanto, C.A., Pattiserlihun, A., Kurniawan, E., Andiani, B.Y., and Perdani, F.P., 2022. Surface Analysis of Activated Carbon from Rice Husk Based on Carbonization and Activation Method. Proceeding of the 1st International Conference on Standardization and Metrology (Iconstam) 2021, 2664, 020005. https://doi.org/10.1063/5.0103325.
Riyanto, C.A., and Prabalaras, E., 2019. The Adsorption Kinetics and Isoterm of Activated Carbon from Water Hyacinth Leaves (Eichhornia Crassipes) on Co(II). Journal of Physics: Conference Series, 1307. https://doi.org/10.1088/1742-6596/1307/1/012002.
Riyanto, C.A., Raharjianti, B.M., and Aminu, N.R., 2021b. Studi Kinetika dan Isoterm Adsorpsi Ion Fe (III) dan Mn (II) pada Karbon Aktif Batang Eceng Gondok. Jurnal Riset Teknologi Industri, 15, 44–55. https://doi.org/10.26578/JRTI.V15I1.6633.
Riyanto, C.A., Yonggulemba, J.D.M., Stefani, D.A., Brotosudarmo, T.W., Anggaran, D., Pradana, Y.K.S., Ariesto, Y., Christyawardana, F.T.A., Sari, I.P., Puspita, N.V.W., and Lutiyono, L., 2024. Selektivitas Adsorpsi Campuran Biner Fe(II)/Cu(II) Menggunakan Karbon Aktif dari Sekam Padi dan Serbuk Gergaji Kayu Jati: KOVALEN: Jurnal Riset Kimia, 10, 58–68. https://doi.org/10.22487/KOVALEN.2024.V10.I1.17060.
Sa’diyah, K., Suharti, P.H., Hendrawati, N., Pratamasari, F.A., and Rahayu, O.M., 2021. Pemanfaatan Serbuk Gergaji Kayu Sebagai Karbon Aktif Melalui Proses Pirolisis dan Aktivasi Kimia. CHEESA: Chemical Engineering Research Articles, 4, 91. https://doi.org/10.25273/cheesa.v4i2.8589.91-99.
Sa’diyah, K., Susanto, Witasari, W.S., and Hendrawati, N., 2023. The Making of Adsorbents from Teak Sawdust through the Pyrolysis Process with the Influence of NaOH Activator Concentration. AIP Conference Proceedings, 2531. https://doi.org/10.1063/5.0125814/2887500.
Sanka, P.M., Rwiza, M.J., and Mtei, K.M., 2020. Removal of Selected Heavy Metal Ions from Industrial Wastewater Using Rice and Corn Husk Biochar. Water, Air, & Soil Pollution 2020 231:5, 231, 1–13. https://doi.org/10.1007/S11270-020-04624-9.
Sarangi, M., Nayak, P., and Tiwari, T.N., 2011. Effect of Temperature on Nano-Crystalline Silica and Carbon Composites Obtained from Rice-Husk Ash. Composites Part B: Engineering, 42, 1994–1998. https://doi.org/10.1016/j.compositesb.2011.05.026.
Shaban, M., Abukhadra, M.R., Hamd, A., Amin, R.R., and Abdel Khalek, A., 2017. Photocatalytic Removal of Congo Red Dye Using MCM-48/Ni2O3 Composite Synthesized Based on Silica Gel Extracted from Rice Husk Ash; Fabrication and Application. Journal of Environmental Management, 204, 189–199. https://doi.org/10.1016/J.JENVMAN.2017.08.048.
Shrestha, D., Nayaju, T., Kandel, M.R., Pradhananga, R.R., Park, C.H., and Kim, C.S., 2023. Rice Husk-Derived Mesoporous Biogenic Silica Nanoparticles for Gravity Chromatography. Heliyon, 9, e15142. https://doi.org/10.1016/j.heliyon.2023.e15142.
Singh, R., Srivastava, P., Singh, P., Sharma, A.K., Singh, H., and Raghubanshi, A.S., 2019. Impact of Rice-Husk Ash on the Soil Biophysical and Agronomic Parameters of Wheat Crop under a Dry Tropical Ecosystem. Ecological Indicators, 105, 505–515. https://doi.org/10.1016/J.ECOLIND.2018.04.043.
Stochero, N.P., Marangon, E., Nunes, A.S., and Tier, M.D., 2017. Development of Refractory Ceramics from Residual Silica Derived from Rice Husk Ash and Steel Fibres. Ceramics International, 43, 13875–13880. https://doi.org/10.1016/J.CERAMINT.2017.07.111.
Sudarja, and Caroko, N., 2012. Kaji Eksperimental Efektifitas Penyerapan Limbah Cair Industri Batik Taman Sari Yogyakarta Menggunakan Arang Aktif Mesh 80 dari Limbah Gergaji Kayu Jati. Ilmiah Semesta Teknika, 14, 50–58. https://doi.org/10.18196/st.v15i1.443.
Sukyankij, Saychol, Sukyankij, Sopida, and Panich-Pat, T., 2023. Effect of Co-Fertilizer Application and Dolomite Amendments on Yield and Grain Quality of Rice Grown on Post-Active Acid Sulfate Soil. AGRIVITA Journal of Agricultural Science, 45, 311–321. https://doi.org/10.17503/AGRIVITA.V45I2.4079.
Sumanjit, Rani, S., and Mahajan, R.K., 2016. Equilibrium, Kinetics and Thermodynamic Parameters for Adsorptive Removal of Dye Basic Blue 9 by Ground Nut Shells and Eichhornia. Arabian Journal of Chemistry, 9, S1464–S1477. https://doi.org/10.1016/J.ARABJC.2012.03.013.
Surbakti, A., Sukendi, S., and Taer, E., 2016. Komposit Karbon Aktif dari Bahan Serbuk Gergaji Kayu Karet dan Nanomagnetik Fe3O4 + PVDF Sebagai Bahan Penyerap Limbah Cair Berbasis Logam Berat. Dinamika Lingkungan Indonesia, 3, 42. https://doi.org/10.31258/dli.3.1.p.42-46.
Tan, K.L., and Hameed, B.H., 2017. Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, 25–48. https://doi.org/10.1016/j.jtice.2017.01.024.
Wardani, R.A.K., Jumiati, and Puspita Sari, D., 2017. Pemanfaatan Limbah Gergaji Kayu Sebagai Media Tanam Jamur dan Kain Perca untuk Bahan Baku dalam Packaging Fung – Cube. Proceeding Biology Education Conference, 23 September 2023, Surakarta, Indonesia, 14, pp. 83–87.
Widyasari, E., Supriadi, S., and Said, I., 2021. Adsorption Capacity of Activated Charcoal Made of Rice Husk on Cd(II) Metal Ions. Jurnal Akademika Kimia, 10, 213–217. https://doi.org/10.22487/J24775185.2021.V10.I4.PP213-218.
Xiao, H., Peng, H., Deng, S., Yang, X., Zhang, Y., and Li, Y., 2012. Preparation of Activated Carbon from Edible Fungi Residue by Microwave Assisted K2CO3 Activation—Application in Reactive Black 5 Adsorption from Aqueous Solution. Bioresource Technology, 111, 127–133. https://doi.org/10.1016/J.BIORTECH.2012.02.054.
Xing, B., Vecitis, C.D., and Senesi, N., 2016. Engineered Nanoparticles and the Environment: Biophysicochemical Processes and Toxicity. John Wiley & Sons, New Jersey.
Zaranyika, M.F., and Chirinda, T., 2011. Heavy Metal Speciation Trends in Mine Slime Dams: A Case Study of Slime Dams at a Goldmine in Zimbabwe. Journal of Environmental Chemistry and Ecotoxicology, 3, 103–115.
Zhang, Y., Pan, K., and Zhong, Q., 2013. Characteristics of Activated Carbon and Carbon Nanotubes as Adsorbents To Remove Annatto (Norbixin) in Cheese Whey. Journal of Agricultural and Food Chemistry, 61, 9230–9240. https://doi.org/10.1021/jf402537y.
Refbacks
- There are currently no refbacks.