Implementation of FTIR-Based Fingerprinting, Antioxidant Compounds Profiling by UHPLC-Q-Orbitrap HRMS, and Docking Study COVID-19 Inhibitor of Buas-Buas (Premna serratifolia) Leaf Extract from Pontianak Indonesia
Abstract
Keywords
Full Text:
PDFReferences
Ali, I., Khan, D., Ali, F., Bibi, H., and Malik, A., 2013. Phytochemical, Antioxidant and Antifungal Studies on the Constituents of Lonicera Quinquelocularis. Journal of the Chemical Society of Pakistan, 35, 139–143.
Barros, S., Henrique, C., and Paula, T. De, 2018. An In Silico Study of the Antioxidant Ability for Two Quantum Chemical Methods. Molecules, 23, 1–17. https://doi.org/10.3390/molecules23112801.
Castaldo, L., Izzo, L., De Pascale, S., Narváez, A., Rodriguez-Carrasco, Y., and Ritieni, A., 2021. Chemical Composition, in Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Nutraceutical Fennel Waste Extract. Molecules, 26, 1–12. https://doi.org/10.3390/molecules26071968.
Castaldo, L., Narváez, A., Izzo, L., Graziani, G., and Ritieni, A., 2020. In Vitro Bioaccessibility and Antioxidant Activity of Coffee Silverskin Polyphenolic Extract and Characterization of Bioactive Compounds Using UHPLC-Q-Orbitrap HRMS. Molecules, 25, 1–14. https://doi.org/10.3390/molecules25092132.
Donoso-Fierro, C., Becerra, J., Bustos-Concha, E., and Silva, M., 2009. Chelating and Antioxidant Activity of Lignans from Chilean Woods (Cupressaceae). Holzforschung, 63, 559–563. https://doi.org/10.1515/HF.2009.123.
Ferdinal, N., Alfajri, R., and Arifin, B., 2015. Isolation and Characterization of Scopoletin from the Bark of Fagraea Ceilanica Thumb and Antioxidants Tests. International Journal on Advanced Science, Engineering and Information Technology, 5, 126–130. https://doi.org/10.18517/ijaseit.5.2.504.
Flora, S.D., Balansky, R., and La Maestra, S., 2021. Antioxidants and COVID-19. Journal of Preventive Medicine and Hygiene, 62, E34–E45. https://doi.org/10.15167/2421-4248/jpmh2021.62.1S3.1895.
Ghosh, D., Mondal, S., and Ramakrishna, K., 2019. Phytochemical Profiling Using LC-Q-TOF-MS Analysis and In Vitro Antioxidant Activity of A Rare Salt-Secreting Mangrove Aegialitis rotundifolia Roxb. Leaves Extract. International Journal of Pharmacy and Pharmaceutical Sciences, 11, 37–47. https://dx.doi.org/10.22159/ijpps.2019v11i3.29985.
Hadiarti, D., Haryadi, W., Matsjeh, S., and Swasono, R.T., 2021. Understanding Phytochemical Roles on Α-Glucosidase Inhibitory Activity Based on Metabolomic Approach of Premna Serratifolia Leaves from West Borneo, Indonesia. Rasayan Journal of Chemistry, 14, 1216–1222. https://doi.org/10.31788/rjc.2021.1426320.
Hadiarti, D., Haryadi, W., Matsjeh, S., Swasono, R.T., and Awaliyah, N., 2023. Profiling of α-Glucosidase Inhibitors from Ethyl Acetate Fraction of Buas-Buas (Premna serratifolia) Leaves Using UHPLC-Q-Orbitrap HRMS and Protein-Ligand Interaction with Molecular Docking. Journal of Applied Pharmaceutical Science, 13, 1–10. https://doi.org/10.7324/japs.2023.130210.
Irfan, A., Imran, M., Khalid, M., Sami Ullah, M., Khalid, N., Assiri, M.A., Thomas, R., Muthu, S., Raza Basra, M.A., Hussein, M., Al-Sehemi, A.G., and Shahzad, M., 2021. Phenolic and Flavonoid Contents in Malva Sylvestris and Exploration of Active Drugs as Antioxidant and Anti-COVID19 by Quantum Chemical and Molecular Docking Studies. Journal of Saudi Chemical Society, 25, 1–12. https://doi.org/10.1016/j.jscs.2021.101277.
Isnindar, Subagus, W., Widyarini, S., and Yuswanto, 2016. Determenation of Antioxidant Activities of Buas-Buas (Premna serratifolia L.) Using DPPH (2, 2-Diphenyl-1- Picrylhydrazyl) Method. Traditional Medicine Journal, 21, 111–115. https://doi.org/10.22146/tradmedj.17292.
Istifli, E.S., 2021. Chemical Composition, Antioxidant and Enzyme Inhibitory Activities of Onosma bourgaei and Onosma trachytricha and in Silico Molecular Docking Analysis of Dominant Compounds. Molecules, 26, 1–18. https://doi.org/10.3390/molecules26102981.
Izzo, L., Castaldo, L., Narváez, A., Graziani, G., Gaspari, A., Rodríguez-Carrasco, Y., and Ritieni, A., 2020. Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMs. Molecules, 25, 1–12. https://doi.org/10.3390/molecules25030631.
Jamuna, S., Karthika, K., Paulsamy, S., Thenmozhi, K., Kathiravan, S., and Venkatesh, R., 2015. Confertin and Scopoletin from Leaf and Root Extracts of Hypochaeris radicata Have Anti-Inflammatory and Antioxidant Activities. Industrial Crops and Products, 70, 221–230. https://doi.org/10.1016/j.indcrop.2015.03.039.
Karimi, A., Krähmer, A., Herwig, N., Schulz, H., Hadian, J., and Meiners, T., 2020. Variation of Secondary Metabolite Profile of Zataria multiflora Boiss. Populations Linked to Geographic, Climatic, and Edaphic Factors. Frontiers in Plant Science, 11, 1–15. https://doi.org/10.3389/fpls.2020.00969.
Kurniawan, M.F., Andarwulan, N., Wulandari, N., and Rafi, M., 2017. Metabolomic Approach for Understanding Phenolic Compounds and Melanoidin Roles on Antioxidant Activity of Indonesia Robusta and Arabica Coffee Extracts. Food Science and Biotechnology, 26, 1475–1480. https://doi.org/10.1007/s10068-017-0228-6.
Lazarova, I., Zengin, G., Gevrenova, R., Nedialkov, P., Aneva, I., Aumeeruddy, M.Z., and Mahomoodally, M.F., 2019. A Comparative Study of UHPLC/Orbitrap MS Metabolomics Profiles and Biological Properties of Asphodeline taurica from Bulgaria and Turkey. Journal of Pharmaceutical and Biomedical Analysis, 168, 174–180. https://doi.org/10.1016/j.jpba.2019.02.008.
Lazarova, I., Zengin, G., Sinan, K.I., Aneva, I., Uysal, S., Picot-Allain, M.C.N., Aktumsek, A., Bouyahya, A., and Mahomoodally, M.F., 2020. Metabolomics Profiling and Biological Properties of Root Extracts from Two Asphodelus Species: A. Albus and A. Aestivus. Food Research International, 134, 109277. https://doi.org/10.1016/j.foodres.2020.109277.
Lee, S.Y., Mediani, A., Ismail, I.S., Maulidiani, and Abas, F., 2019. Antioxidants and α-Glucosidase Inhibitors from Neptunia oleracea Fractions Using 1 H NMR-Based Metabolomics Approach and UHPLC-MS/MS Analysis 03 Chemical Sciences 0301 Analytical Chemistry. BMC Complementary and Alternative Medicine, 19, 1–15. https://doi.org/10.1186/s12906-018-2413-4.
Lubaina, A.S., Brijithlal, N.D., and Murungan, K., 2016. Phytochemical Analysis and Antioxidant Potentiality of Premna serratifolia L. an Aromatic Medicinal Plant. World Journal Of Pharmaceutical Research, 5, 841–852. https://doi.org/10.20959/wjpr201612-7439.
Mahomoodally, M.F., Zengin, G., Zheleva-Dimitrova, D., Mollica, A., Stefanucci, A., Sinan, K.I., and Aumeeruddy, M.Z., 2019. Metabolomics Profiling, Bio-Pharmaceutical Properties of Hypericum lanuginosum Extracts by In Vitro and In Silico Approaches. Industrial Crops and Products, 133, 373–382. https://doi.org/10.1016/j.indcrop.2019.03.033.
Ng, R.C., Kassim, N.K., Yeap, Y.S.Y., Lian Ee, G.C., Yazan, S.L., and Musa, K.H., 2018. Isolation of Carbazole Alkaloids and Coumarins from Aegle Marmelos and Murraya Koenigii and Their Antioxidant Properties. Sains Malaysiana, 47, 1749–1756. https://doi.org/10.17576/jsm-2018-4708-14.
Purwanti, N.U., Wahdiyanti, R., and Susanti, R., 2018. Effect of Variation of Solvent Concentration to Antioxidant Activity of Ethanolic Extract of Buas-Buas Stem (Premna serratifolia L.) Using DPPH (2, 2-Diphenyl-1 Picrylhidrazyl) Scavenging Method. International Conference on Pharmaceutical Research and Practice. ICPRP, 15-17 December 2018, Yogyakarta, pp. 126–132.
Puspita, W., Yuspita Sari, D., and Ristia Rahman, I., 2020. Uji Aktivitas Antioksidan Ekstrak Etanol Daun Buas-Buas (Premna serratifolia L.) Asal Kabupaten Melawi Provinsi Kalimantan Barat dengan Metode DPPH. Jurnal Insan Farmasi Indonesia, 3, 405–412. https://doi.org/10.36387/jifi.v3i2.532.
Rohaeti, E., Karunina, F., and Rafi, M., 2020. FTIR-Based Fingerprinting and Chemometrics for Rapid Investigation of Antioxidant Activity from Syzygium polyanthum Extracts. Indonesian Journal of Chemistry, 21, 128–136. https://doi.org/10.22146/ijc.54577.
Sakna, S.T., Mocan, A., Sultani, H.N., El-fiky, N.M., Wessjohann, L.A., and Farag, M.A., 2019. Metabolites Profiling of Ziziphus Leaf Taxa via UHPLC/PDA/ESI-MS in Relation to Their Biological Activities. Food Chemistry, 293, 233–246. https://doi.org/10.1016/j.foodchem.2019.04.097.
Samy, M.N., Gomaa, A.A.-R., Attia, E.Z., Ibrahim, M.A.A., Desoukey, S.Y., and Kamel, M.S., 2022. Flavonoids of Zinnia Elegans: Chemical Profile and, in Vitro Antioxidant and in Silico Anti-COVID-19 Activities. South African Journal of Botany, 147, 576–585. https://doi.org/10.1016/j.sajb.2022.02.024.
Selvam, T.N., Venkatakrishnan, V., Damodar Kumar, S., and Elumalai, P., 2012. Antioxidant and Tumor Cell Suppression Potential of Premna serratifolia Linn Leaf. Toxicology International, 19, 31–34. https://doi.org/10.4103/0971-6580.94514.
Shi, J., Wu, Q., Deng, J., Balfour, K., Chen, Z., Liu, Y., Kumar, S., Chen, Y., Zhu, Z., and Zhu, G., 2022. Metabolic Profiling and Antioxidant Analysis for the Juvenile Red Fading Leaves of Sweetpotato. Plants, 11, 1–15. https://doi.org/10.3390/plants11223014.
Simamora, A., Santoso, A.W., Timotius, K.H., and Rahayu, I., 2020. Antioxidant Activity, Enzyme Inhibition Potentials, and Phytochemical Profiling of Premna Serratifolia L. Leaf Extracts. International Journal of Food Science, 2020, 1–11. https://doi.org/10.1155/2020/3436940.
Timotius, K.H., Simamora, A., and Santoso, A.W., 2018. Chemical Characteristics and in Vitro Antidiabetic and Antioxidant Activities of Premna serratifolia L. Leaf Infusion and Decoction. Pharmacognosy Journal, 10, 1114–1118. https://doi.org/10.5530/pj.2018.6.189.
Umar, A.H., Ratnadewi, D., Rafi, M., and Sulistyaningsih, Y.C., 2021. Untargeted Metabolomics Analysis Using FTIR and UHPLC-Q-Orbitrap HRMS of Two Curculigo Species and Evaluation of Their Antioxidant and α-Glucosidase Inhibitory Activities. Metabolites, 11, 1–17. https://doi.org/10.3390/metabo11010042.
Wang, K., Zhang, Y., Ekunwe, S.I.N., Yi, X., Liu, X., Wang, H., and Pan, Y., 2011. Antioxidant Activity and Inhibition Effect on the Growth of Human Colon Carcinoma (HT-29) Cells of Esculetin from Cortex Fraxini. Medicinal Chemistry Research, 20, 968–974. https://doi.org/10.1007/s00044-010-9426-y.
Wen, B., Ren, S., Zhang, Y., Duan, Y., Shen, J., Zhu, X., Wang, Y., Ma, Y., Zou, Z., and Fang, W., 2020. Effects of Geographic Locations and Topographical Factors on Secondary Metabolites Distribution in Green Tea at a Regional Scale. Food Control, 110, 106979. https://doi.org/10.1016/j.foodcont.2019.106979.
World Health Organization, 2023. WHO Coronavirus Disease (COVID-19) Dashboard with Vaccination Data | WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. World Health Organization. <https://covid19.who.int/%0Ahttps://covid19.who.int/%0Ahttps://covid19.who.int/region/searo/country/bd> (accessed December 31, 2023).
Zengin, G., Mahomoodally, F., Picot-Allain, C., Diuzheva, A., Jekő, J., Cziáky, Z., Cvetanović, A., Aktumsek, A., Zeković, Z., and Rengasamy, K.R.R., 2019. Metabolomic Profile of Salvia viridis L. Root Extracts Using HPLC–MS/MS Technique and Their Pharmacological Properties: A Comparative Study. Industrial Crops and Products, 131, 266–280. https://doi.org/10.1016/j.indcrop.2019.01.060.
Refbacks
- There are currently no refbacks.